-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathreconstruct_intestine_denovo.py
78 lines (62 loc) · 3.36 KB
/
reconstruct_intestine_denovo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import novosparc
import numpy as np
import scanpy as sc
import os
if __name__ == '__main__':
######################################
# 1. Set the data and output paths ###
######################################
dataset_path = 'novosparc/datasets/intestine/dge.tsv.gz'
target_space_path = 'novosparc/datasets/intestine/zones.tsv'
dirname = os.path.dirname(__file__)
output_folder = os.path.join(dirname, 'output_intestine')
#######################################
# 2. Read the dataset and normalize ###
#######################################
dataset = novosparc.io.load_data(dataset_path).T
sc.pp.normalize_total(dataset, target_sum=1, inplace=True)
# Read the annnotated spatial information
locations_original = np.loadtxt(target_space_path, skiprows=1, usecols=range(1, 4))
locations_original = locations_original[:, 2]
grid_len = len(np.unique(locations_original))
locations = np.vstack((range(grid_len), np.ones(grid_len))).T
# Optional: Subsample the cells
# num_cells = len(dataset.obs)
# cells_selected, dataset = novosparc.pp.subsample_dataset(dataset, num_cells-1, num_cells)
# locations_original = locations_original[cells_selected]
dge_full = dataset.X
# Compute mean dge over original zones
dge_full_mean = np.zeros((grid_len, dge_full.shape[1]))
for i in range(grid_len):
indices = np.argwhere(locations_original == i).flatten()
temp = np.mean(dge_full[indices, :], axis=0)
dge_full_mean[i, :] = temp
dge_full_mean = dge_full_mean.T
gene_names = np.array(dataset.var.index.tolist())
# Select variable genes
var_genes = np.argsort(np.divide(np.var(dge_full.T, axis=1), np.mean(dge_full.T, axis=1) + 0.0001))
dge = dge_full[:, var_genes[-1000:]]
#########################################
# 3. Setup and reconstruct the tissue ###
#########################################
tissue = novosparc.cm.Tissue(dataset, locations, output_folder)
tissue.setup_reconstruction(num_neighbors_t=2)
tissue.reconstruct(alpha_linear=0) # alpha is 0 for de novo reconstruction
# Compute mean expression distribution over embedded zones
mean_exp_new_dist = np.zeros((grid_len, grid_len))
for i in range(grid_len):
indices = np.argwhere(locations_original == i).flatten()
temp = np.sum(tissue.gw[indices, :], axis=0)
mean_exp_new_dist[i, :] = temp / np.sum(temp)
#########################################
# 4. Write data to disk for further use #
#########################################
novosparc.io.write_sdge_to_disk(tissue, output_folder)
###########################################################################################
# 5. Plot histogram showing the distribution over embedded zones for each original zone #
###########################################################################################
novosparc.pl.plot_histogram_intestine(mean_exp_new_dist, folder=output_folder)
###########################################################################################
# 6. Plot spatial expression of a few gene groups for the original and embedded zones #
###########################################################################################
novosparc.pl.plot_spatial_expression_intestine(dge_full_mean, tissue.sdge, gene_names, folder=output_folder)