-
Notifications
You must be signed in to change notification settings - Fork 11
/
dqn_lstm.py
356 lines (282 loc) · 12.8 KB
/
dqn_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
'''
courtesy: https://pythonprogramming.net/training-deep-q-learning-dqn-reinforcement-learning-python-tutorial/?completed=/deep-q-learning-dqn-reinforcement-learning-python-tutorial/
'''
import csv
import itertools
import os
import random
import time
from collections import deque
import numpy as np
import tensorflow as tf
from keras.callbacks import TensorBoard
from keras.layers import Dense, LSTM, Dropout
from keras.models import Sequential
from keras.models import load_model
from keras.optimizers import Adam, SGD, RMSprop
from keras.utils import normalize
from tqdm import tqdm
import datetime
from environment import Environment
from lib import plotting
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if tf.test.gpu_device_name():
print("in gpu")
else:
print("not in gpu")
DISCOUNT = 0.90
REPLAY_MEMORY_SIZE = 50000 # How many last steps to keep for model training
MIN_REPLAY_MEMORY_SIZE = 129 # Minimum number of steps in a memory to start training
MINIBATCH_SIZE = 128 # How many steps (samples) to use for training
UPDATE_TARGET_EVERY = 50 # Terminal states (end of episodes)
MODEL_NAME = 'dqn_lstm_128_1e-6'
MIN_REWARD = -500 # For model save
MEMORY_FRACTION = 0.20
LEARNING_RATE = 0.000001
# Environment settings
EPISODES = 6000
# Exploration settings
epsilon = 1 # not a constant, going to be decayed
EPSILON_DECAY = 0.9992 # 0.998, 0.99975,
MIN_EPSILON = 0.05
# Stats settings
AGGREGATE_STATS_EVERY = 10 # episodes
SHOW_PREVIEW = False
# For stats
ep_rewards = [-1000]
# For more repetitive results
random.seed(1)
np.random.seed(1)
tf.set_random_seed(1)
# Memory fraction, used mostly when trai8ning multiple agents
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=MEMORY_FRACTION)
# backend.set_session(tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)))
# filename = "data/state-trace.csv"
# # Create models folder
# if not os.path.isdir('models'):
# os.makedirs('models')
#
#
# def csv_writer(row):
# with open(filename, 'a+') as file:
# writer = csv.writer(file)
# for item in row:
# writer.writerow(eval(item))
# Own Tensorboard class
class ModifiedTensorBoard(TensorBoard):
# Overriding init to set initial step and writer (we want one log file for all .fit() calls)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.step = 1
self.writer = tf.summary.FileWriter(self.log_dir)
# Overriding this method to stop creating default log writer
def set_model(self, model):
pass
# Overrided, saves logs with our step number
# (otherwise every .fit() will start writing from 0th step)
def on_epoch_end(self, epoch, logs=None):
self.update_stats(**logs)
# Overrided
# We train for one batch only, no need to save anything at epoch end
def on_batch_end(self, batch, logs=None):
pass
# Overrided, so won't close writer
def on_train_end(self, _):
pass
# Custom method for saving own metrics
# Creates writer, writes custom metrics and closes writer
def update_stats(self, **stats):
self._write_logs(stats, self.step)
# Agent class
class DQNLSTMAgent:
def __init__(self, state_size, action_size, model_file='models/' + MODEL_NAME + '.model'):
self.n_states = state_size
self.n_actions = action_size
if os.path.exists(model_file):
print("Loaded saved model")
self.model = load_model(model_file)
self.target_model = load_model(model_file)
else:
# Main model
self.model = self.create_model()
# Target network
self.target_model = self.create_model()
self.target_model.set_weights(self.model.get_weights())
# An array with last n steps for training
self.replay_memory = deque(maxlen=REPLAY_MEMORY_SIZE)
# Custom tensorboard object
self.tensorboard = ModifiedTensorBoard(log_dir="logs/{}-{}".format(MODEL_NAME, int(time.time())))
# Used to count when to update target network with main network's weights
self.target_update_counter = 0
def create_model(self):
model = Sequential()
model.add(Dense(100, activation='relu', input_shape=(1, 7)))
# model.add(Dense(50, activation='relu'))
# model.add(Dense(50, activation='relu'))
# model.add(LSTM(50, dropout=0.2, recurrent_dropout=0.2, return_sequences=True))
model.add(LSTM(50, return_sequences=True))
model.add(Dense(50, activation='relu'))
#model.add(Dense(3, activation='relu'))
model.add(Dense(self.n_actions, activation='linear')) # linear or softmax
# model = model(states)
model.compile(loss="mean_squared_error", optimizer=RMSprop(lr=LEARNING_RATE), metrics=['accuracy'])
# print(model.summary())
return model
# Adds step's data to a memory replay array
# (observation space, action, reward, new observation space, done)
def update_replay_memory(self, transition):
self.replay_memory.append(transition)
# Trains main network every step during episode
def train(self, terminal_state, step):
# Start training only if certain number of samples is already saved
if len(self.replay_memory) < MIN_REPLAY_MEMORY_SIZE:
return
# Get a minibatch of random samples from memory replay table
minibatch = random.sample(self.replay_memory, MINIBATCH_SIZE)
# Get current states from minibatch, then query NN model for Q values
current_states = np.zeros((len(minibatch), self.n_states))
new_current_states = np.zeros((len(minibatch), self.n_states))
for i, transition in enumerate(minibatch):
current_states[i] = transition[0]
new_current_states[i] = transition[3]
# convert to 3D array to get prediction from LSTM module
current_states = np.reshape(current_states, (len(current_states), 1, self.n_states))
new_current_states = np.reshape(new_current_states, (len(new_current_states), 1, self.n_states))
current_qs_list = self.model.predict(current_states)
future_qs_list = self.target_model.predict(new_current_states)
# convert to 2D array for iterating over the values
current_qs_list = np.reshape(current_qs_list, (len(current_qs_list), self.n_actions))
future_qs_list = np.reshape(future_qs_list, (len(future_qs_list), self.n_actions))
X = np.zeros((len(minibatch), self.n_states))
y = np.zeros((len(minibatch), self.n_actions))
# Now we need to enumerate our batches
for index, (current_state, action, reward, new_current_state, done) in enumerate(minibatch):
# If not a terminal state, get new q from future states, otherwise set it to 0
# almost like with Q Learning, but we use just part of equation here
if not done:
max_future_q = np.max(future_qs_list[index])
new_q = reward + DISCOUNT * max_future_q
else:
new_q = reward
# Update Q value for given state
current_qs = current_qs_list[index]
current_qs[action] = new_q
# And append to our training data
X[index] = current_state
y[index] = current_qs
# reshape X and y to compatible with LSTM [batch size, time step, sequence]
X = np.reshape(X, (MINIBATCH_SIZE, 1, self.n_states))
y = np.reshape(y, (MINIBATCH_SIZE, 1, self.n_actions))
# print("Training X: ", X)
# print("Training y: ", y.shape)
# X = np.array(X).reshape(64, 7)
# Fit on all samples as one batch, log only on terminal state
self.model.fit(X, y, batch_size=MINIBATCH_SIZE, verbose=0, shuffle=False,
callbacks=[self.tensorboard] if terminal_state else None)
# Update target network counter every episode
if terminal_state:
self.target_update_counter += 1
# If counter reaches set value, update target network with weights of main network
if self.target_update_counter > UPDATE_TARGET_EVERY:
self.target_model.set_weights(self.model.get_weights())
self.target_update_counter = 0
# Queries main network for Q values given current observation space (environment state)
def get_qs(self, state):
# print("State for Prediction: ", state)
# make 3-D array for LSTM [batch, time step, sequence]
state = np.reshape(state, (1, 1, self.n_states))
# print("Reshaped State for Prediction: ", state)
predict = self.model.predict(state)
# print(predict)
return predict
def driver_func():
global epsilon
# Main program starts here.
env = Environment()
agent = DQNLSTMAgent(7, 2)
# print(agent.model.summary())
# Iterate over episodes
stats = plotting.EpisodeStats(
episode_lengths=np.zeros(EPISODES + 1),
episode_rewards=np.zeros(EPISODES + 1))
# step_actions = []
total_step = 1
# total_states = []
new_time = 0
for episode in tqdm(range(1, EPISODES + 1), ascii=True, unit='episodes'):
# Update tensorboard step every episode
agent.tensorboard.step = episode
# Restarting episode - reset episode reward and step number
episode_reward = 0
step = 1
# Reset environment and get initial state
current_state = env.reset()
current_state = np.asarray(current_state)
#current_state = normalize(current_state)
#current_state = current_state.reshape(1, 7)
# Reset flag and start iterating until episode ends
# done = False
for t in itertools.count():
# This part stays mostly the same, the change is to query a model for Q values
if np.random.random() > epsilon:
# Get action from Q table
action = np.argmax(agent.get_qs(current_state))
# print(action)
else:
# Get random action
action = np.random.randint(0, env.n_actions)
new_state, reward, done = env.step(action)
new_state = np.asarray(new_state)
#new_state = normalize(new_state)
#new_state = new_state.reshape(1, 7)
episode_reward += reward
stats.episode_rewards[episode] += reward
stats.episode_lengths[episode] = t
if SHOW_PREVIEW and not episode % AGGREGATE_STATS_EVERY:
env.render()
# Every step we update replay memory and train main network
agent.update_replay_memory((current_state, action, reward, new_state, done))
agent.train(done, step)
current_state = new_state
step += 1
total_step += 1
if done:
break
# Append episode reward to a list and log stats (every given number of episodes)
ep_rewards.append(episode_reward)
if not episode % AGGREGATE_STATS_EVERY or episode == 1:
average_reward = sum(ep_rewards[-AGGREGATE_STATS_EVERY:]) / len(ep_rewards[-AGGREGATE_STATS_EVERY:])
min_reward = min(ep_rewards[-AGGREGATE_STATS_EVERY:])
max_reward = max(ep_rewards[-AGGREGATE_STATS_EVERY:])
agent.tensorboard.update_stats(reward_avg=average_reward, reward_min=min_reward, reward_max=max_reward,
epsilon=epsilon)
# # Save model, but only when min reward is greater or equal a set value
# if min_reward >= MIN_REWARD:
# agent.model.save(f'models/{MODEL_NAME}.model')
# Decay epsilon
if epsilon > MIN_EPSILON:
# epsilon /= 3
epsilon *= EPSILON_DECAY
epsilon = max(MIN_EPSILON, epsilon)
# print(f"Step {total_step}/40000\n")
# iterate for 100k data, not just episode
if total_step >= 100000:
break
# print(new_time)
agent.model.save(f'models/{MODEL_NAME}.model')
print("Total Steps: ", total_step)
print("Total Costs:", env.total_cost)
print("Total Execution Time(S): ", env.exe_delay / 100000.0)
print("Total Transmission Time(S): ", env.trans_delay / 100000.0)
print("Total proc Energy cost(J): ", env.proc_energy / 100000.0)
print("Total Trans Energy cost(J): ", env.trans_energy / 100000.0)
print("Total Money for offloading(Cent): ", env.tot_off_cost / 1000.0)
print("Offloading numbers", env.off_decisions)
print("offload from edge: ", env.off_from_edge)
# with open("data/iteration-costs.txt", "a+") as file1:
# file1.write(str([MODEL_NAME, total_step, env.total_cost, env.exe_delay, env.tot_energy_cost, env.tot_off_cost]))
# file1.write(str([env.off_decisions, env.off_from_edge]))
# file1.write("\n")
# csv_writer(total_states)
# plotting.plot_episode_stats(stats, filename="dqn-lstm")
driver_func()