forked from trixi-framework/Trixi.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinear_scalar_advection.jl
206 lines (152 loc) · 7.41 KB
/
linear_scalar_advection.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@doc raw"""
LinearScalarAdvectionEquation2D
The linear scalar advection equation
```math
\partial_t u + a_1 \partial_1 u + a_2 \partial_2 u = 0
```
in two space dimensions with constant velocity `a`.
"""
struct LinearScalarAdvectionEquation2D{RealT<:Real} <: AbstractLinearScalarAdvectionEquation{2, 1}
advectionvelocity::SVector{2, RealT}
end
function LinearScalarAdvectionEquation2D(a::NTuple{2,<:Real})
LinearScalarAdvectionEquation2D(SVector(a))
end
function LinearScalarAdvectionEquation2D(a1::Real, a2::Real)
LinearScalarAdvectionEquation2D(SVector(a1, a2))
end
# TODO Taal refactor, remove old constructors and replace them with default values
function LinearScalarAdvectionEquation2D()
a = convert(SVector{2,Float64}, parameter("advectionvelocity"))
LinearScalarAdvectionEquation2D(a)
end
get_name(::LinearScalarAdvectionEquation2D) = "LinearScalarAdvectionEquation2D"
varnames_cons(::LinearScalarAdvectionEquation2D) = SVector("scalar")
varnames_prim(::LinearScalarAdvectionEquation2D) = SVector("scalar")
# Calculates translated coordinates `x` for a periodic domain
function x_trans_periodic_2d(x, domain_length = SVector(2, 2), center = SVector(0, 0))
x_normalized = x .- center
x_shifted = x_normalized .% domain_length
x_offset = ((x_shifted .< -0.5*domain_length) - (x_shifted .> 0.5*domain_length)) .* domain_length
return center + x_shifted + x_offset
end
# Set initial conditions at physical location `x` for time `t`
function initial_condition_gauss(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x_trans_periodic_2d(x - equation.advectionvelocity * t)
return @SVector [exp(-(x_trans[1]^2 + x_trans[2]^2))]
end
function initial_condition_convergence_test(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advectionvelocity * t
c = 1.0
A = 0.5
L = 2
f = 1/L
omega = 2 * pi * f
scalar = c + A * sin(omega * sum(x_trans))
return @SVector [scalar]
end
function initial_condition_sin_sin(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advectionvelocity * t
scalar = sin(2 * pi * x_trans[1]) * sin(2 * pi * x_trans[2])
return @SVector [scalar]
end
function initial_condition_constant(x, t, equation::LinearScalarAdvectionEquation2D)
return @SVector [2.0]
end
function initial_condition_linear_x_y(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advectionvelocity * t
return @SVector [sum(x_trans)]
end
function initial_condition_linear_x(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advectionvelocity * t
return @SVector [x_trans[1]]
end
function initial_condition_linear_y(x, t, equation::LinearScalarAdvectionEquation2D)
# Store translated coordinate for easy use of exact solution
x_trans = x - equation.advectionvelocity * t
return @SVector [x_trans[2]]
end
# Apply boundary conditions
function boundary_condition_gauss(u_inner, orientation, direction, x, t, surface_flux_function,
equation::LinearScalarAdvectionEquation2D)
u_boundary = initial_condition_gauss(x, t, equation)
# Calculate boundary flux
if direction in (2, 4) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equation)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equation)
end
return flux
end
function boundary_condition_linear_x_y(u_inner, orientation, direction, x, t,
surface_flux_function,
equation::LinearScalarAdvectionEquation2D)
u_boundary = initial_condition_linear_x_y(x, t, equation)
# Calculate boundary flux
if direction in (2, 4) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equation)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equation)
end
return flux
end
function boundary_condition_linear_x(u_inner, orientation, direction, x, t,
surface_flux_function,
equation::LinearScalarAdvectionEquation2D)
u_boundary = initial_condition_linear_x(x, t, equation)
# Calculate boundary flux
if direction in (2, 4) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equation)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equation)
end
return flux
end
function boundary_condition_linear_y(u_inner, orientation, direction, x, t,
surface_flux_function,
equation::LinearScalarAdvectionEquation2D)
u_boundary = initial_condition_linear_y(x, t, equation)
# Calculate boundary flux
if direction in (2, 4) # u_inner is "left" of boundary, u_boundary is "right" of boundary
flux = surface_flux_function(u_inner, u_boundary, orientation, equation)
else # u_boundary is "left" of boundary, u_inner is "right" of boundary
flux = surface_flux_function(u_boundary, u_inner, orientation, equation)
end
return flux
end
# Pre-defined source terms should be implemented as
# function source_terms_WHATEVER(ut, u, x, element_id, t, n_nodes, equation::LinearScalarAdvectionEquation2D)
# Calculate 1D flux in for a single point
@inline function calcflux(u, orientation, equation::LinearScalarAdvectionEquation2D)
a = equation.advectionvelocity[orientation]
return a * u
end
function flux_lax_friedrichs(u_ll, u_rr, orientation, equation::LinearScalarAdvectionEquation2D)
a = equation.advectionvelocity[orientation]
return 0.5 * ( a * (u_ll + u_rr) - abs(a) * (u_rr - u_ll) )
end
# Determine maximum stable time step based on polynomial degree and CFL number
function calc_max_dt(u, element_id, invjacobian, cfl,
equation::LinearScalarAdvectionEquation2D, dg)
λ_max = maximum(abs, equation.advectionvelocity)
return cfl * 2 / (nnodes(dg) * invjacobian * λ_max)
end
@inline have_constant_speed(::LinearScalarAdvectionEquation2D) = Val(true)
@inline function max_abs_speeds(eq::LinearScalarAdvectionEquation2D)
return abs.(eq.advectionvelocity)
end
# Convert conservative variables to primitive
@inline cons2prim(u, equation::LinearScalarAdvectionEquation2D) = u
# Convert conservative variables to entropy variables
@inline cons2entropy(u, equation::LinearScalarAdvectionEquation2D) = u
# Calculate entropy for a conservative state `cons`
@inline entropy(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5 * u^2
@inline entropy(u, equation::LinearScalarAdvectionEquation2D) = entropy(u[1], equation)
# Calculate total energy for a conservative state `cons`
@inline energy_total(u::Real, ::LinearScalarAdvectionEquation2D) = 0.5 * u^2
@inline energy_total(u, equation::LinearScalarAdvectionEquation2D) = energy_total(u[1], equation)