-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdetect_face_features.py
110 lines (90 loc) · 3.59 KB
/
detect_face_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# import the necessary packages
from collections import OrderedDict
import numpy as np
import cv2
import argparse
import dlib
import imutils
facial_features_cordinates = {}
# define a dictionary that maps the indexes of the facial
# landmarks to specific face regions
FACIAL_LANDMARKS_INDEXES = OrderedDict([
("Mouth", (48, 68)),
("Right_Eyebrow", (17, 22)),
("Left_Eyebrow", (22, 27)),
("Right_Eye", (36, 42)),
("Left_Eye", (42, 48)),
("Nose", (27, 35)),
("Jaw", (0, 17))
])
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,
help="path to input image")
args = vars(ap.parse_args())
def shape_to_numpy_array(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coordinates = np.zeros((68, 2), dtype=dtype)
# loop over the 68 facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, 68):
coordinates[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coordinates
def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):
# create two copies of the input image -- one for the
# overlay and one for the final output image
overlay = image.copy()
output = image.copy()
# if the colors list is None, initialize it with a unique
# color for each facial landmark region
if colors is None:
colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),
(168, 100, 168), (158, 163, 32),
(163, 38, 32), (180, 42, 220)]
# loop over the facial landmark regions individually
for (i, name) in enumerate(FACIAL_LANDMARKS_INDEXES.keys()):
# grab the (x, y)-coordinates associated with the
# face landmark
(j, k) = FACIAL_LANDMARKS_INDEXES[name]
pts = shape[j:k]
facial_features_cordinates[name] = pts
# check if are supposed to draw the jawline
if name == "Jaw":
# since the jawline is a non-enclosed facial region,
# just draw lines between the (x, y)-coordinates
for l in range(1, len(pts)):
ptA = tuple(pts[l - 1])
ptB = tuple(pts[l])
cv2.line(overlay, ptA, ptB, colors[i], 2)
# otherwise, compute the convex hull of the facial
# landmark coordinates points and display it
else:
hull = cv2.convexHull(pts)
cv2.drawContours(overlay, [hull], -1, colors[i], -1)
# apply the transparent overlay
cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)
# return the output image
print(facial_features_cordinates)
return output
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# load the input image, resize it, and convert it to grayscale
image = cv2.imread(args["image"])
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale image
rects = detector(gray, 1)
# loop over the face detections
for (i, rect) in enumerate(rects):
# determine the facial landmarks for the face region, then
# convert the landmark (x, y)-coordinates to a NumPy array
shape = predictor(gray, rect)
shape = shape_to_numpy_array(shape)
output = visualize_facial_landmarks(image, shape)
cv2.imshow("Image", output)
cv2.waitKey(0)