Skip to content

Latest commit

 

History

History
106 lines (74 loc) · 2.58 KB

README.rst

File metadata and controls

106 lines (74 loc) · 2.58 KB

GPAW

GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE). It uses plane-waves, atom-centered basis-functions or real-space uniform grids combined with multigrid methods.

Webpage: http://wiki.fysik.dtu.dk/gpaw

Requirements

  • Python 2.6-3.5
  • ASE (atomic simulation environment)
  • NumPy (base N-dimensional array package)
  • LibXC
  • BLAS
  • LAPACK

Optional:

  • MPI
  • ScaLAPACK
  • SciPy (library for scientific computing)

Installation

Do this:

$ python setup.py install --user

and make sure you have ~/.local/bin in your $PATH.

For more details, please see:

https://wiki.fysik.dtu.dk/gpaw/install.html

Testing

Please run the tests:

$ gpaw test -j 4  # takes 1 hour!

and send us the output if there are failing tests.

Contact

Please send us bug-reports, patches, code, ideas and questions.

Example

Geometry optimization of hydrogen molecule:

>>> from ase import Atoms
>>> from ase.optimize import BFGS
>>> from ase.io import write
>>> from gpaw import GPAW, PW
>>> h2 = Atoms('H2',
               positions=[[0, 0, 0],
                          [0, 0, 0.7]])
>>> h2.center(vacuum=2.5)
>>> h2.set_calculator(GPAW(xc='PBE',
                           mode=PW(300),
                           txt='h2.txt'))
>>> opt = BFGS(h2, trajectory='h2.traj')
>>> opt.run(fmax=0.02)
BFGS:   0  09:08:09       -6.566505       2.2970
BFGS:   1  09:08:11       -6.629859       0.1871
BFGS:   2  09:08:12       -6.630410       0.0350
BFGS:   3  09:08:13       -6.630429       0.0003
>>> write('H2.xyz', h2)
>>> h2.get_potential_energy()  # ASE's units are eV and Å
-6.6304292169392784

Getting started

Once you have familiarized yourself with ASE and NumPy, you should take a look at the GPAW exercises and tutorials.