-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
360 lines (301 loc) · 13.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import argparse
import sys
import os
import logging
import shutil
import numpy as np
import warnings
warnings.simplefilter("ignore", UserWarning)
from sklearn import metrics
import torch
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from models.data_PointNet import get_PointNet_train_valid_test_loader
from models.PointNet import PointNet
parser = argparse.ArgumentParser(description='Learning the Crystal Structure Genome')
# task-specific parameters
parser.add_argument('--data-root', type=str)
parser.add_argument('--target', choices=['band_gap', 'e_above_hull', 'bulk_modulus', 'shear_modulus'])
parser.add_argument('--model', type=str, choices=['FCNet', 'PointNet'])
parser.add_argument('--run-name', type=str, default='TEST_run1')
parser.add_argument('--hdfs-dir', type=str, default=None)
parser.add_argument('--num-data-workers', type=int, default=8)
parser.add_argument('--rand-seed', type=int, default=123)
parser.add_argument('--dropout', type=float, default=0.2)
parser.add_argument('--max-Miller', type=int, default=3)
parser.add_argument('--diffraction', type=str, choices=['XRD', 'ND'])
parser.add_argument('--cell-type', type=str, choices=['primitive', 'conventional'])
# FCNet-specific hyper-parameters
parser.add_argument('--fcnet-permute_hkl', type=lambda x: eval(x), default=False)
parser.add_argument('--fcnet-randomize_hkl', type=lambda x: eval(x), default=False)
parser.add_argument('--fcnet-fc-dims', type=int, nargs='+')
# PointNet-specific hyper-parameters
parser.add_argument('--pointnet-conv-filters', type=int, nargs='+')
parser.add_argument('--pointnet-fc-dims', type=int, nargs='+')
parser.add_argument('--pointnet-randomly-scale-intensity', type=lambda x: eval(x), default=False)
parser.add_argument('--pointnet-systematic-absence', type=lambda x: eval(x), default=False)
# general hyper-parameters
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--lr', type=float, default=0.001)
# default parameters
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--print-freq', type=int, default=200)
parser.add_argument('--restore-path', type=str, default='')
# parse args
args = parser.parse_args(sys.argv[1:])
args.device = torch.device('cuda:0') if torch.cuda.is_available() \
else torch.device('cpu')
args.start_epoch = 0
print('User defined variables:', flush=True)
for key, val in vars(args).items():
print(' => {:17s}: {}'.format(key, val), flush=True)
handler = logging.StreamHandler(sys.stdout)
logging.getLogger().setLevel(logging.INFO)
logging.basicConfig(
format='%(asctime)s %(message)s', datefmt='%y/%m/%d %H:%M:%S', handlers=[handler])
best_performance = 0
# random seed for reproducibility
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): # GPU operation have separate seed
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.determinstic = True
torch.backends.cudnn.benchmark = False
def main():
global args, best_performance
set_seed(args.rand_seed)
if args.model == 'FCNet':
# dataloader
train_loader, valid_loader, test_loader = get_FCNet_train_valid_test_loader(
root=args.data_root,
target=args.target,
max_Miller=args.max_Miller,
diffraction=args.diffraction,
cell_type=args.cell_type,
permute_hkl=args.fcnet_permute_hkl,
randomize_hkl=args.fcnet_randomize_hkl,
batch_size=args.batch_size,
num_data_workers=args.num_data_workers)
# construct model
model = FCNet(max_Miller=args.max_Miller,
fc_dims=args.fcnet_fc_dims,
dropout=args.dropout)
elif args.model == 'PointNet':
# dataloader
train_loader, valid_loader, test_loader = get_PointNet_train_valid_test_loader(
root=args.data_root,
target=args.target,
max_Miller=args.max_Miller,
diffraction=args.diffraction,
cell_type=args.cell_type,
randomly_scale_intensity=args.pointnet_randomly_scale_intensity,
systematic_absence=args.pointnet_systematic_absence,
batch_size=args.batch_size,
num_data_workers=args.num_data_workers)
# construct model
model = PointNet(conv_filters=args.pointnet_conv_filters,
fc_dims=args.pointnet_fc_dims,
dropout=args.dropout)
else:
raise NotImplementedError
# send model to device
if torch.cuda.is_available():
print('running on GPU:\n')
else:
print('running on CPU\n')
model = model.to(args.device)
# show number of trainable model parameters
trainable_params = sum(p.numel() for p in model.parameters()
if p.requires_grad)
print('Number of trainable model parameters: {:d}'.format(trainable_params))
# define loss function
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# HDFS
if args.hdfs_dir is not None:
os.system(f'hdfs dfs -mkdir -p {args.hdfs_dir}')
# optionally resume from a checkpoint
if args.restore_path != '':
assert os.path.isfile(args.restore_path)
print("=> loading checkpoint '{}'".format(args.restore_path), flush=True)
checkpoint = torch.load(args.restore_path, map_location=torch.device('cpu'))
args.start_epoch = checkpoint['epoch'] + 1
best_performance = checkpoint['best_performance']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.restore_path, checkpoint['epoch']), flush=True)
# learning-rate scheduler
scheduler = CosineAnnealingWarmRestarts(optimizer=optimizer,
T_0=args.epochs,
eta_min=1E-8)
print('\nStart training..', flush=True)
for epoch in range(args.start_epoch, args.start_epoch+args.epochs):
lr = scheduler.get_last_lr()
logging.info('Epoch: {}, LR: {:.6f}'.format(epoch, lr[0]))
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
performance = validate(valid_loader, model, criterion)
scheduler.step()
# check performance
is_best = performance > best_performance
best_performance = max(performance, best_performance)
# save checkpoint
save_checkpoint({
'epoch': epoch,
'state_dict': model.state_dict(),
'best_performance': best_performance,
'optimizer': optimizer.state_dict(),
}, is_best, args)
# test best model
print('---------Evaluate Model on Test Set---------------', flush=True)
best_model = load_best_model()
print('best validation performance: {:.3f}'.format(best_model['best_performance']))
model.load_state_dict(best_model['state_dict'])
validate(test_loader, model, criterion, test_mode=True)
def train(train_loader, model, criterion, optimizer, epoch):
# init average meters
losses = AverageMeter('Loss', ':6.3f')
accuracies = AverageMeter('Accu', ':6.3f')
precisions = AverageMeter('Prec', ':6.3f')
recalls = AverageMeter('Rec', ':6.3f')
fscores = AverageMeter('Fsc', ':6.3f')
auc_scores = AverageMeter('AUC', ':6.3f')
ave_precisions = AverageMeter('AP', ':6.3f')
report = [losses, accuracies, precisions,
recalls, fscores, ave_precisions, auc_scores]
# progress meter
progress = ProgressMeter(
len(train_loader),
report,
prefix="Epoch: [{}]".format(epoch)
)
# switch to training mode
model.train()
for idx, (data, target) in enumerate(train_loader):
# send data to device
data = data.to(args.device)
target = target.to(args.device)
# compute model output
output = model(data)
# compute loss
loss = criterion(output, target.squeeze(dim=-1))
# performance metrics
accuracy, precision, recall, fscore, auc_score, ave_precision =\
class_eval(output.detach().cpu().numpy(), target.cpu().numpy())
losses.update(loss.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
precisions.update(precision, target.size(0))
recalls.update(recall, target.size(0))
fscores.update(fscore, target.size(0))
auc_scores.update(auc_score, target.size(0))
ave_precisions.update(ave_precision, target.size(0))
# compute gradient and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (idx+1) % args.print_freq == 0:
progress.display(idx+1)
def validate(valid_loader, model, criterion, test_mode=False):
# init average meters
losses = AverageMeter('Loss', ':6.3f')
accuracies = AverageMeter('Accu', ':6.3f')
precisions = AverageMeter('Prec', ':6.3f')
recalls = AverageMeter('Rec', ':6.3f')
fscores = AverageMeter('Fsc', ':6.3f')
auc_scores = AverageMeter('AUC', ':6.3f')
ave_precisions = AverageMeter('AP', ':6.3f')
report = [losses, accuracies, precisions,
recalls, fscores, ave_precisions, auc_scores]
# progress meter
progress = ProgressMeter(
len(valid_loader),
report,
prefix='Validate: ' if not test_mode else 'Test: '
)
# switch to evaluation mode
model.eval()
with torch.no_grad():
for idx, (data, target) in enumerate(valid_loader):
# send data to device
data = data.to(args.device)
target = target.to(args.device)
# compute model output
output = model(data)
# compute loss
loss = criterion(output, target.squeeze(dim=-1))
# performance metrics
accuracy, precision, recall, fscore, auc_score, ave_precision =\
class_eval(output.detach().cpu().numpy(), target.cpu().numpy())
losses.update(loss.cpu().item(), target.size(0))
accuracies.update(accuracy, target.size(0))
precisions.update(precision, target.size(0))
recalls.update(recall, target.size(0))
fscores.update(fscore, target.size(0))
auc_scores.update(auc_score, target.size(0))
ave_precisions.update(ave_precision, target.size(0))
progress.display(idx+1)
return auc_scores.avg
def save_checkpoint(state, is_best, args):
check_root = args.run_name + '_checkpoints/'
if not os.path.exists(check_root):
os.mkdir(check_root)
filename = check_root + 'model_last.pt'
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, check_root + 'model_best.pt')
# save to HDFS
if args.hdfs_dir is not None:
os.system(f'hdfs dfs -put -f {check_root} {args.hdfs_dir}')
def load_best_model():
filename = args.run_name + '_checkpoints/' + 'model_best.pt'
if not os.path.isfile(filename):
print('checkpoint {} not found, exiting...', flush=True)
sys.exit(1)
return torch.load(filename)
def class_eval(prediction, target_label):
pred_label = np.argmax(np.exp(prediction), axis=1)
assert(prediction.shape[1] == 2)
precision, recall, fscore, _ = metrics.precision_recall_fscore_support(
target_label, pred_label, average='binary', warn_for=tuple())
try:
auc_score = metrics.roc_auc_score(target_label, prediction[:,1])
except:
auc_score = float('-inf')
accuracy = metrics.accuracy_score(target_label, pred_label)
ave_precision = metrics.average_precision_score(target_label, prediction[:,1])
return accuracy, precision, recall, fscore, auc_score, ave_precision
class AverageMeter(object):
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.avg = 0.
self.sum = 0.
self.cnt = 0.
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def __str__(self):
fmtstr = '{name} {avg' + self.fmt + '}'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print(' '.join(entries), flush=True)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
if __name__ == "__main__":
main()