forked from maitre-matt/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-rest.sh
executable file
·148 lines (132 loc) · 6.88 KB
/
train-rest.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
exit 0 # TODO - update script to new API
# <create_variables>
SUBSCRIPTION_ID=$(az account show --query id | tr -d '\r"')
LOCATION=$(az group show --query location | tr -d '\r"')
RESOURCE_GROUP=$(az group show --query name | tr -d '\r"')
WORKSPACE=$(az configure -l | jq -r '.[] | select(.name=="workspace") | .value')
API_VERSION="2022-02-01-preview"
COMPUTE_NAME="cpu-cluster"
TOKEN=$(az account get-access-token --query accessToken -o tsv)
#</create_variables>
echo "Using:\nSUBSCRIPTION_ID: $SUBSCRIPTION_ID\nLOCATION: $LOCATION\nRESOURCE_GROUP: $RESOURCE_GROUP\nWORKSPACE: $WORKSPACE"
# define how to wait
wait_for_completion () {
# TODO error handling here
job_status="unknown"
while [[ $job_status != "Completed" && $job_status != "Failed" && $job_status != "Canceled" ]]
do
echo "Getting job status from: $1"
job=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/jobs/$1?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN")
# TODO error handling here
job_status=$(echo $job | jq -r '.properties' | jq -r '.status')
echo "Current job status: $job_status"
sleep 5
done
}
# Get values for storage account
response=$(curl --location --request GET "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/datastores?api-version=$API_VERSION&isDefault=true" \
--header "Authorization: Bearer $TOKEN")
# <get_storage_details>
AZUREML_DEFAULT_DATASTORE=$(echo $response | jq -r '.value[0].name')
AZUREML_DEFAULT_CONTAINER=$(echo $response | jq -r '.value[0].properties.contents.containerName')
export AZURE_STORAGE_ACCOUNT=$(echo $response | jq -r '.value[0].properties.contents.accountName')
# </get_storage_details>
# <read_condafile>
CONDA_FILE=$(cat jobs/train/lightgbm/iris/environment.yml)
# <read_condafile>
# <create_environment>
ENV_VERSION=$RANDOM
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/environments/lightgbm-environment/versions/$ENV_VERSION?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\":{
\"condaFile\": \"$CONDA_FILE\",
\"image\": \"mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04\"
}
}"
# </create_environment>
#<create_data>
DATA_VERSION=$RANDOM
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/data/iris-data/versions/$DATA_VERSION?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\": {
\"description\": \"Iris dataset\",
\"dataType\": \"UriFile\",
\"dataUri\": \"https://azuremlexamples.blob.core.windows.net/datasets/iris.csv\"
}
}"
#</create_data>
az storage blob upload-batch -d $AZUREML_DEFAULT_CONTAINER/src -s jobs/train/lightgbm/iris/src
#<create_code>
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/codes/train-lightgbm/versions/1?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\": {
\"description\": \"Train code\",
\"codeUri\": \"https://trainws1352661735.blob.core.windows.net/training-scripts/main.py\"
}
}"
#</create_code>
# <create_job>
run_id=$(uuidgen)
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/jobs/$run_id?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\": {
\"jobType\": \"Command\",
\"codeId\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/codes/train-lightgbm/versions/1\",
\"command\": \"python main.py --iris-csv \$AZURE_ML_INPUT_iris\",
\"environmentId\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/environments/lightgbm-environment/versions/$ENV_VERSION\",
\"inputDataBindings\": {
\"iris\": {
\"jobInputType\": \"UriFile\",
\"uri\": \"https://azuremlexamples.blob.core.windows.net/datasets/iris.csv\"
}
},
\"experimentName\": \"lightgbm-iris\",
\"computeId\": "/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/computes/$COMPUTE_NAME\"
}
}"
# </create_job>
wait_for_completion $run_id
# <create_a_sweep_job>
run_id=$(uuidgen)
curl --location --request PUT "https://management.azure.com/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/jobs/$run_id?api-version=$API_VERSION" \
--header "Authorization: Bearer $TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\": {
\"samplingAlgorithm\": {
\"samplingAlgorithmType\": \"Random\",
},
\"jobType\": \"Sweep\",
\"trial\":{
\"codeId\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/codes/train-lightgbm/versions/1\",
\"command\": \"python main.py --iris-csv \$AZURE_ML_INPUT_iris\",
\"environmentId\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/environments/lightgbm-environment/versions/$ENV_VERSION\"
},
\"experimentName\": \"lightgbm-iris-sweep\",
\"computeId\": \"target\": \"/subscriptions/$SUBSCRIPTION_ID/resourceGroups/$RESOURCE_GROUP/providers/Microsoft.MachineLearningServices/workspaces/$WORKSPACE/computes/$COMPUTE_NAME\",
\"objective\": {
\"primaryMetric\": \"test-multi_logloss\",
\"goal\": \"minimize\"
},
\"searchSpace\": {
\"learning_rate\": [\"uniform\", [0.01, 0.9]],
\"boosting\":[\"choice\",[[\"gbdt\",\"dart\"]]]
},
\"limits\": {
\"jobLimitsType\": \"sweep\",
\"maxTotalTrials\": 20,
\"maxConcurrentTrials\": 10,
}
}
}"
# </create_a_sweep_job>
wait_for_completion $run_id