-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadapt.py
48 lines (42 loc) · 1.88 KB
/
adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse, os, infolog
from time import sleep
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from hparams_adapt import hparams
from infolog import log
from tacotron.adapt import tacotron_adapt
log = infolog.log
def prepare_run(args):
modified_hp = hparams.parse(args.hparams)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(args.tf_log_level)
run_name = args.name
log_dir = os.path.join(args.base_dir, 'logs-{}'.format(run_name))
os.makedirs(log_dir, exist_ok=True)
infolog.init(os.path.join(log_dir, 'Terminal_train_log'), run_name, args.slack_url)
base_model_dir = os.path.join(args.base_model, 'taco_pretrained')
return log_dir, base_model_dir, modified_hp
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--tacotron_input', default='training_data/train.txt')
parser.add_argument('--name',
help='Name of logging directory.')
parser.add_argument('--summary_interval', type=int, default=1,
help='Steps between running summary ops')
parser.add_argument('--checkpoint_interval', type=int, default=1,
help='Steps between writing checkpoints')
parser.add_argument('--tacotron_train_steps', type=int, default=200001,
help='total number of tacotron training steps')
parser.add_argument('--tf_log_level', type=int, default=1,
help='Tensorflow C++ log level.')
parser.add_argument('--slack_url', default=None,
help='slack webhook notification destination link')
parser.add_argument('--base_model', default='logs-Tacotron',
help='path to the log dir of the base model (default=logs-Tacotron).')
args = parser.parse_args()
log_dir, base_model_dir, hparams = prepare_run(args)
tacotron_adapt(args, log_dir, base_model_dir, hparams)
if __name__ == '__main__':
main()