-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlenet.py
58 lines (52 loc) · 1.7 KB
/
lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
'''
classical LeNet5 for 32x32 images with pytorch
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class BasicBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0):
super(BasicBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.pool = nn.MaxPool2d(2,stride=2)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.pool(out)
out = F.relu(out)
return out
class Net(nn.Module):
def __init__(self, in_channels, n_class, use_feature=False):
super(Net, self).__init__()
self.name = 'LeNet5'
self.use_feature = use_feature
self.b0 = nn.BatchNorm2d(in_channels)
self.b1 = BasicBlock(in_channels, 6)
self.b2 = BasicBlock(6, 16)
self.n_features = 16*5*5
self.fc = nn.Sequential(
nn.Linear(self.n_features, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear( 84, n_class)
)
def forward(self, x):
f0 = self.b0(x)
f1 = self.b1(f0)
f2 = self.b2(f1)
features = (f0,f1,f2)
activations = self.fc(features[-1].view(-1, self.n_features))
if self.use_feature:
out = (activations, features)
else:
out = activations
return out
'''
net = Net(1, 4)
x = torch.randn(10,1,32,32)
y = net(Variable(x))
print(y.data.size())
'''