-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathvgg.py
56 lines (49 loc) · 1.95 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
'''
VGG11/13/16/19 in Pytorch.
forked from kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
'''
import torch
import torch.nn as nn
from torch.autograd import Variable
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
'cVGG19': [8, 8, 'M', 16, 16, 'M', 32, 32, 32, 32, 'M', 64, 64, 64, 64, 'M', 128, 128, 128, 128, 'M'],
}
class Net(nn.Module):
def __init__(self, vgg_name, in_channels=1, n_class=5, use_feature=False):
super(Net, self).__init__()
self.name = vgg_name
self.in_channels = in_channels
self.use_feature = use_feature
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Linear(128, n_class)
def forward(self, x):
features = self.features(x)
activations = self.classifier(features.view(features.size(0), -1))
if self.use_feature:
out = (activations, features)
else:
out = activations
return out
def _make_layers(self, cfg):
layers = []
in_channels = self.in_channels
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=2, stride=1)] # AvePool for bigger input sizes
return nn.Sequential(*layers)
'''
net = Net('cVGG19',3,4)
x = torch.randn(10,3,32,32)
print(net(Variable(x)).size())
'''