|
20 | 20 | import torch.utils.data as data_utils
|
21 | 21 | from models import *
|
22 | 22 |
|
23 |
| -## load data |
24 |
| -data_arr_01 = data_loader.load_data('data/pgb/SF01/vib_data_1.txt') |
25 |
| -# data_arr_03 = data_loader.load_data('data/pgb/SF03/vib_data_1.txt') |
26 |
| -# data_arr_01 = data_loader.resample_arr(data_arr_01, num=240) # add for Ince's model |
27 |
| -# data_arr_03 = data_loader.resample_arr(data_arr_03, num=240) # add for Ince's model |
28 |
| -# data_arr_01, _ = data_loader.fft_arr(data_arr_01) # add for fft wdcnn |
29 |
| -# data_arr_03, _ = data_loader.fft_arr(data_arr_03) # add for fft wdcnn |
30 |
| -# data_arr_01 = data_loader.stft_arr(data_arr_01) # add for stft-LeNet |
31 |
| -# data_arr_03 = data_loader.stft_arr(data_arr_03) |
32 |
| -label_vec = data_loader.load_label('data/pgb/SF01/label_vec.txt') |
33 |
| - |
34 |
| -trainset_01, testset_01 = data_loader.split_set(data_arr_01, label_vec) |
35 |
| -# trainset_03, testset_03 = data_loader.split_set(data_arr_03, label_vec) |
36 |
| -train_loader = data_utils.DataLoader(dataset = trainset_01, batch_size =512 , shuffle = True, num_workers = 2) |
37 |
| -test_loader = data_utils.DataLoader(dataset = testset_01, batch_size = 512, shuffle = True, num_workers = 2) |
38 |
| -print('Number of training samples: {}'.format(len(train_loader.dataset))) |
39 |
| -print('Number of testing samples: {}'.format(len(test_loader.dataset))) |
40 |
| -print( ) |
41 |
| - |
42 |
| -## make models |
43 |
| -model = dcnn.Net('DCNN08', 1, 5) |
44 |
| - |
45 |
| -## train |
46 |
| -criterion = nn.CrossEntropyLoss() |
47 |
| -optimizer = optim.Adam(model.parameters(), weight_decay=0.0001) |
48 |
| -best_model, loss_curve = iter_utils.train(model, train_loader, criterion, optimizer, |
49 |
| - init_lr=0.0001, decay_epoch=5, n_epoch=10) |
50 |
| - |
51 |
| -# test |
52 |
| -test_accuracy = iter_utils.test(best_model, test_loader) |
53 |
| -print('Test accuracy: {:.4f}%'.format(100*test_accuracy)) |
54 |
| - |
55 |
| -## visualization |
56 |
| -# TODO |
| 23 | +def main(): |
| 24 | + ## load data |
| 25 | + # data_arr_01 = data_loader.load_data(r'toydata/data.txt') |
| 26 | + # label_vec = data_loader.load_label(r'toydata/label.txt') |
57 | 27 |
|
| 28 | + data_arr_01 = data_loader.load_data(r'data/uestc_pgb/SF01/vib_data_1.txt') |
| 29 | + # data_arr_03 = data_loader.load_data('data/pgb/SF03/vib_data_1.txt') |
| 30 | + # data_arr_01 = data_loader.resample_arr(data_arr_01, num=240) # add for Ince's model |
| 31 | + # data_arr_03 = data_loader.resample_arr(data_arr_03, num=240) # add for Ince's model |
| 32 | + # data_arr_01, _ = data_loader.fft_arr(data_arr_01) # add for fft wdcnn |
| 33 | + # data_arr_03, _ = data_loader.fft_arr(data_arr_03) # add for fft wdcnn |
| 34 | + # data_arr_01 = data_loader.stft_arr(data_arr_01) # add for stft-LeNet |
| 35 | + # data_arr_03 = data_loader.stft_arr(data_arr_03) |
| 36 | + label_vec = data_loader.load_label(r'data/uestc_pgb/SF01/label_vec.txt') |
| 37 | + |
| 38 | + trainset_01, testset_01 = data_loader.split_set(data_arr_01, label_vec) |
| 39 | + # trainset_03, testset_03 = data_loader.split_set(data_arr_03, label_vec) |
| 40 | + train_loader = data_utils.DataLoader(dataset = trainset_01, batch_size =512 , shuffle = True, num_workers = 2) |
| 41 | + test_loader = data_utils.DataLoader(dataset = testset_01, batch_size = 512, shuffle = True, num_workers = 2) |
| 42 | + print('Number of training samples: {}'.format(len(train_loader.dataset))) |
| 43 | + print('Number of testing samples: {}'.format(len(test_loader.dataset))) |
| 44 | + print( ) |
| 45 | + |
| 46 | + ## make models |
| 47 | + model = wdcnn.Net(1, 5) |
| 48 | + |
| 49 | + ## train |
| 50 | + criterion = nn.CrossEntropyLoss() |
| 51 | + optimizer = optim.Adam(model.parameters(), weight_decay=0.0001) |
| 52 | + best_model, loss_curve = iter_utils.train(model, train_loader, criterion, optimizer, |
| 53 | + init_lr=0.0001, decay_epoch=5, n_epoch=10, use_cuda=False) |
| 54 | + |
| 55 | + # test |
| 56 | + test_accuracy = iter_utils.test(best_model, test_loader) |
| 57 | + print('Test accuracy: {:.4f}%'.format(100*test_accuracy)) |
| 58 | + |
| 59 | + |
| 60 | + ## visualization |
| 61 | + # TODO |
| 62 | + |
| 63 | +if __name__ == '__main__': |
| 64 | + main() |
0 commit comments