forked from artxz/FAFB-photoreceptor-connectivity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstartup.R
460 lines (393 loc) · 17.5 KB
/
startup.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# This code loads all necessary libraries, seed column neurons, and some connectivity info.
# One can either load neurons and connectivity data from FAFB, which requires access permission, or from saved .Rdata files.
# To reproduce a plot, see "plot_centraleye.R" and "plot_DRA.R" for examples
# load library ----------------------------------------------------------
# usually you can install missing library using: install.packages("name of the library")
library(natverse)
library(tidyverse)
library(rjson)
library(ggpubr)
library(alphashape3d)
library(RColorBrewer) # palette
# library(webshot2) #snapshot3d, remotes::install_github("rstudio/chromote"),remotes::install_github("rstudio/webshot2")
# - for making the gallery
library(png)
library(grid)
library(gridExtra)
# clean everythign up.
rm(list=ls())
#close any open rgl windows
while (rgl.cur() > 0) { rgl.close() }
# load some useful functions
source("R7R8_func.R")
# palette ----------------------------------------------------------------
# pal_n <- c("#f781bf", "#1f78b4", "#984ea3", "#b2df8a", brewer.pal(9, "Paired")[c(2,6,9)] )
pal_syn <- brewer.pal(9,"Set1")[c(4,3)]
names(pal_syn) <- c("R7","R8")
# FAFB space axes --------------------------------------------------------------
axis_ori <- c(300e3, 150e3, 250e3)
axis_lat <- c(-10000, 0, 0) #green
axis_dor <- c(0, -10000, 0) #magenta
axis_post <- c(0, 0, 10000) #blue
# # neuron data from CATMAID server ------------------------------------------------------------
#
# # - seed column R7 R8
# skid_pR7 <- c(10082582, 10538510)# pR7
# skid_yR7 <- c(10585940, 10653593) #yR7
# skid_pR8 <- c(10086691, 11466408) #pR8
# skid_yR8 <- c(10629254, 11468318) #yR8
#
# skid_pyR7R8 <- c(skid_pR7, skid_yR7, skid_pR8, skid_yR8)
#
# pR7 = read.neurons.catmaid(skid_pR7, .progress='text')
# yR7 = read.neurons.catmaid(skid_yR7, .progress='text')
# pR8 = read.neurons.catmaid(skid_pR8, .progress='text')
# yR8 = read.neurons.catmaid(skid_yR8, .progress='text')
#
# pR7 <- fix_jump(pR7)
# yR7 <- fix_jump(yR7)
# pR8 <- fix_jump(pR8)
# yR8 <- fix_jump(yR8)
#
# # - all p and y R7s
# pR7_all_info <- catmaid_query_by_annotation("pR7") #all pR7 annotation
# yR7_all_info <- catmaid_query_by_annotation("yR7")
# R7_p <- read.neurons.catmaid(pR7_all_info$skid, .progress='text')
# R7_y <- read.neurons.catmaid(yR7_all_info$skid, .progress='text')
#
# nopen3d()
# plot3d(pR7, col = 'black')
# plot3d(yR7, col = 'brown')
# plot3d(pR8, col = 'grey')
# plot3d(yR8, col = 'gold')
# plot3d(R7_p, col='gray')
# plot3d(R7_y, col='yellow')
#
# # seed DRAR7/R8
# skid_DRAR7 <- c(10191735, 10300949, 11728779)
# skid_DRAR8 <- c(10190508, 10300963, 11728827)
# skid_DRAR7R8 <- c(skid_DRAR7, skid_DRAR8)
# DRAR8 = read.neurons.catmaid(skid_DRAR8, .progress='text')
# DRAR7 = read.neurons.catmaid(skid_DRAR7, .progress='text')
#
# # - Tm20 for LO mesh
# skid <- c(10423774, 11444392, 11450552, 11473668)
# Tm20 <- read.neurons.catmaid(skid, .progress='text')
#
# # - complete DmDRA
# # Putative Dm-DRA1 10247371 TO 10247370
# # Putative Dm-DRA1 10440161 TO 10440160
# # Putative Dm-DRA1 12106450 TO 12106449
# # Putative Dm-DRA2 10411789 TO 10411788
# # Putative Dm-DRA2 10449077 TO 10449076
# # Putative Dm-DRA2 11710980 TO 11710979
#
# # DmDRA1_skid <- c(10247370, 10440160, 12106449)
# # DmDRA1 <- read.neurons.catmaid(DmDRA1_skid, .progress='text')
# # DmDRA2_skid <- c(10411788, 10449076, 11710979)
# # DmDRA2 <- read.neurons.catmaid(DmDRA1_skid, .progress='text')
# #
# # - aMe12
# skid_aMe12 <- c(28841,164544,7038035)
# aMe12 <- read.neurons.catmaid(skid= skid_aMe12, .progress='text' )
# aMe12 <- fix_jump(aMe12)
#
# # # SAVE
# save(pR7, pR8, yR7, yR8, R7_p, R7_y, DRAR7, DRAR8, Tm20, aMe12, pR7_all_info, yR7_all_info, file = "data/neu_R7R8.RData")
# neuron data from saved data --------------------------------------------
# seed column R7 R8
skid_pR7 <- c(10082582, 10538510)# pR7
skid_pR8 <- c(10086691, 11466408) #pR8
skid_yR7 <- c(10585940, 10653593)
skid_yR8 <- c(10629254, 11468318) #yR8
skid_pyR7R8 <- c(skid_pR7, skid_yR7, skid_pR8, skid_yR8)
# seed col DRA
skid_DRAR7 <- c(10191735, 10300949, 11728779)
skid_DRAR8 <- c(10190508, 10300963, 11728827)
skid_DRAR7R8 <- c(skid_DRAR7, skid_DRAR8)
skid_aMe12 <- c(28841,164544,7038035)
# R7/8
load("data/neu_R7R8.RData")
# - Mi1
# DRA Mi1, access FAFB server
# anno_Mi1_DRA <- catmaid_query_by_annotation('DRA_column') # DRA col
# anno_Mi1_DRA_excl <- catmaid_query_by_annotation('non_PR_column') # DRA col excluded
load("data/Mi1_info.RData") #load locally
ind_Mi1_DRA <- which(anno_Mi1$skid %in% anno_Mi1_DRA$skid)
ind_Mi1_DRA_hcol <- c(133, 268, 42) #seed col
ind_Mi1_DRA <- ind_Mi1_DRA[!(ind_Mi1_DRA %in% ind_Mi1_DRA_hcol)] #exclude seed column
ind_Mi1_DRA_excl <- which(anno_Mi1$skid %in% anno_Mi1_DRA_excl$skid)
# save(anno_Mi1, anno_Mi1_DRA, anno_Mi1_DRA_excl, xyz_M5_avg, Mi1_xyz, Mi1_16_me, DRA_Mi1, file = "data/Mi1_info.RData")
# meshes ------------------------------------------------------------------
# # - Medulla layer 5
# M5_msh <- catmaid_get_volume("v14.ME_R_M5_Mi1")
# - medulla layer, old
# ME_msh <- as.mesh3d(FAFBNP.surf, 'ME_R')
# JFRC2010
load("data/JFRC2NP.surf.fafb.rda") # data from Greg Jefferis
ME_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="ME_R")
ME_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="ME_L")
LO_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="LO_R")
AOTU_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="AOTU_R")
LH_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="LH_R")
LOP_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="LOP_R")
LOP_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="LOP_L")
FLA_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="FLA_R")
IPS_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="IPS_L")
IPS_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="IPS_R")
SPS_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="SPS_R")
PLP_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="PLP_R")
PLP_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="PLP_L")
AME_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="AME_R")
AME_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="AME_L")
MB_CA_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="MB_CA_R")
MB_CA_L_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="MB_CA_L")
SCL_R_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="SCL_R")
FB_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="FB")
EB_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="EB")
MB_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="MB")
PB_msh <- as.mesh3d(JFRC2NP.surf.fafb, Regions="PB")
# # connectivity data from CATMAID ----------------------------------------------------------------------------------------------
#
# # - central eye
# pyR7R8_conn <- list()
# pyR7R8_conn_in <- list()
# pyR7R8_conn_out <- list()
# for (j in 1:length(skid_pyR7R8)) {
# pyR7R8_conn[[j]] <- catmaid_query_connected(skid_pyR7R8[j])
# # group incoming / outgoing
# pyR7R8_conn_in[[j]] <- pyR7R8_conn[[j]]$incoming %>%
# group_by(partner) %>%
# summarise(syn.count=sum(syn.count)) %>%
# data.frame()
# pyR7R8_conn_out[[j]] <- pyR7R8_conn[[j]]$outgoing %>%
# group_by(partner) %>%
# summarise(syn.count=sum(syn.count)) %>%
# data.frame()
# }
#
# # -- incoming
# R7R8_in <- pyR7R8_conn_in %>%
# reduce(full_join, by="partner") %>%
# replace(is.na(.), 0)
# colnames(R7R8_in) <- c("partner", "pR7a","pR7b","yR7a","yR7b","pR8a","pR8b","yR8a","yR8b")
# R7R8_in %<>% as_tibble() %>%
# mutate(pR7 = rowSums(select(., starts_with("pR7")))) %>%
# mutate(yR7 = rowSums(select(., starts_with("yR7")))) %>%
# mutate(pR8 = rowSums(select(., starts_with("pR8")))) %>%
# mutate(yR8 = rowSums(select(., starts_with("yR8"))))
# R7R8_in_ori <- R7R8_in
#
# # - outgoing
# R7R8_out <- pyR7R8_conn_out %>%
# reduce(full_join, by="partner") %>%
# replace(is.na(.), 0)
# colnames(R7R8_out) <- c("partner", "pR7a","pR7b","yR7a","yR7b","pR8a","pR8b","yR8a","yR8b")
# R7R8_out %<>% as_tibble() %>%
# mutate(pR7 = rowSums(select(., starts_with("pR7")))) %>%
# mutate(yR7 = rowSums(select(., starts_with("yR7")))) %>%
# mutate(pR8 = rowSums(select(., starts_with("pR8")))) %>%
# mutate(yR8 = rowSums(select(., starts_with("yR8"))))
# R7R8_out_ori <- R7R8_out
#
#
#
# # - DRA
# DRAR7R8_conn <- list()
# DRAR7R8_conn_in <- list()
# DRAR7R8_conn_out <- list()
# for (j in 1:length(skid_DRAR7R8)) {
# DRAR7R8_conn[[j]] <- catmaid_query_connected(skid_DRAR7R8[j])
# # group incoming / outgoing
# DRAR7R8_conn_in[[j]] <- DRAR7R8_conn[[j]]$incoming %>%
# group_by(partner) %>%
# summarise(syn.count=sum(syn.count)) %>%
# data.frame()
# DRAR7R8_conn_out[[j]] <- DRAR7R8_conn[[j]]$outgoing %>%
# group_by(partner) %>%
# summarise(syn.count=sum(syn.count)) %>%
# data.frame()
# }
#
# # -- DRA incoming
# DRAR7R8_in <- DRAR7R8_conn_in %>%
# reduce(full_join, by="partner") %>%
# replace(is.na(.), 0)
# colnames(DRAR7R8_in) <- c("partner", "DRAR7a","DRAR7b","DRAR7c","DRAR8a","DRAR8b","DRAR8c")
# DRAR7R8_in %<>% as_tibble() %>%
# mutate(DRAR7 = rowSums(select(., starts_with("DRAR7")))) %>%
# mutate(DRAR8 = rowSums(select(., starts_with("DRAR8"))))
# DRAR7R8_in_ori <- DRAR7R8_in
#
# # -- DRA outgoing
# DRAR7R8_out <- DRAR7R8_conn_out %>%
# reduce(full_join, by="partner") %>%
# replace(is.na(.), 0)
# colnames(DRAR7R8_out) <- c("partner", "DRAR7a","DRAR7b","DRAR7c","DRAR8a","DRAR8b","DRAR8c")
# DRAR7R8_out %<>% as_tibble() %>%
# mutate(DRAR7 = rowSums(select(., starts_with("DRAR7")))) %>%
# mutate(DRAR8 = rowSums(select(., starts_with("DRAR8"))))
# DRAR7R8_out_ori <- DRAR7R8_out
#
# # SAVE
# save(R7R8_in_ori, R7R8_out_ori, DRAR7R8_in_ori, DRAR7R8_out_ori, file = "data/conn_R7R8.RData")
# connectivity data from saved ----------------------------------------------------------------------------------------------
load("data/conn_R7R8.RData")
# central eye, define a coord transformation for plotting --------------------
# use seed columns and surrounding columns to define a plane (via pca principal component analysis)
# transform (translation + rotation using pca) all relavent neurons/meshes
# such that they are centered at the origin of the coordinate system and aligned with the xyz axes
Mi1_ind_p <- c(38, 40) # Mi1 index
Mi1_ind_y <- c(39, 41)
Mi1_ind_Nnb_p <- c(500, 657, 364, 742, 599, 209)
Mi1_ind_Nnb_y <- c(365, 35, 208, 210, 207, 605)
Mi1_ind_pca <- c(Mi1_ind_p, Mi1_ind_y, Mi1_ind_Nnb_p, Mi1_ind_Nnb_y)
# Mi1_16_me <- nlapply(Mi1[Mi1_ind_pca], function(x) subset(x, pointsinside(x, ME_msh))) #me portion
# for Dm8 plot only
Mi1_ind_R7_p <- c(334, 457, 211, 205, 720, 248, 707, 342, 343)
Mi1_ind_R7_y <- c(441, 10, 583, 718, 206, 484, 606, 667)
# # DEBUG index of pale and yellow col
# nopen3d()
# plot3d(R7_p, lwd =2)
# points3d(xyz_M5_avg, size = 10, col='gray')
# # identify3d(xyz_M5_avg)
# points3d(xyz_M5_avg[Mi1_ind_Nnb_p,], size = 13)
# points3d(xyz_M5_avg[Mi1_ind_Nnb_y,], size = 13, col='cyan')
# use pca to obtain transformation (translation + rotation matrix)
node_xyz <- xyzmatrix(Mi1_16_me)
me_pca <- prcomp(node_xyz)
if (me_pca$rotation[,1] %*% c(-0.84, 0.20, -0.49) < 0) {
me_pca$rotation <- - me_pca$rotation
}
if (t(cross3D(me_pca$rotation[,1],me_pca$rotation[,2])) %*% me_pca$rotation[,3] < 0 ) {
me_pca$rotation[,3] <- - me_pca$rotation[,3]
}
# transform neuron(s)
# Mi1_xform <- xEucl_neu(Mi1, me_pca$rotation, me_pca$center)
pR7_xform <- xEucl_neu(pR7, me_pca$rotation, me_pca$center)
pR8_xform <- xEucl_neu(pR8, me_pca$rotation, me_pca$center)
yR7_xform <- xEucl_neu(yR7, me_pca$rotation, me_pca$center)
yR8_xform <- xEucl_neu(yR8, me_pca$rotation, me_pca$center)
# axes for plotting
axis_ori_me <- c(-1.05e5, 30000, 35000)
axis_lat_me <- axis_lat %*% me_pca$rotation
axis_dor_me <- axis_dor %*% me_pca$rotation
axis_post_me <- axis_post %*% me_pca$rotation
# DRA, define a coord transformation -------------------------------
# use the medulla portion only
DRAR7_me <- nlapply(DRAR7, function(x) subset(x, pointsinside(x, ME_msh)))
DRAR8_me <- nlapply(DRAR8, function(x) subset(x, pointsinside(x, ME_msh)))
DRA_ref_com <- rbind(xyzmatrix(DRAR7_me[[1]]), xyzmatrix(DRAR8_me[[1]])) %>% colMeans() # use polar col
ii <- sweep(xyz_M5_avg, 2, DRA_ref_com)^2 %>% rowSums() %>% sqrt() %>% order() %>% head(.,7)
DRA_Mi1 <- nlapply(Mi1[ii], function(x) subset(x, pointsinside(x,ME_msh,rval='distance') > 0))
# pca
node_xyz <- xyzmatrix(DRA_Mi1)
DRA_me_pca <- prcomp(node_xyz)
if (DRA_me_pca$rotation[,1] %*% c(-0.84, 0.20, -0.49) < 0) {
DRA_me_pca$rotation <- - DRA_me_pca$rotation
}
if (t(cross3D(DRA_me_pca$rotation[,1],DRA_me_pca$rotation[,2])) %*% DRA_me_pca$rotation[,3] < 0 ) {
DRA_me_pca$rotation[,3] <- - DRA_me_pca$rotation[,3]
}
# Mi1_xform_DRA <- xEucl_neu(Mi1, DRA_me_pca$rotation, DRA_me_pca$center)
# Mi1_me_xform_DRA <- xEucl_neu(Mi1_me, DRA_me_pca$rotation, DRA_me_pca$center)
DRAR7_xform <- xEucl_neu(DRAR7, DRA_me_pca$rotation, DRA_me_pca$center)
DRAR8_xform <- xEucl_neu(DRAR8, DRA_me_pca$rotation, DRA_me_pca$center)
# DmDRA1_xform <- xEucl_neu(DmDRA1, DRA_me_pca$rotation, DRA_me_pca$center)
# DmDRA2_xform <- xEucl_neu(DmDRA2, DRA_me_pca$rotation, DRA_me_pca$center)
# # DEBUG, id pale and yellow col Mi1 index
# nopen3d()
# plot3d(DRAR7, lwd =2)
# points3d(xyz_M5_avg, size = 10, col='gray')
# # identify3d(xyz_M5_avg)
# - transform meshes
DRA_ME_msh_xform <- ME_msh
DRA_ME_msh_xform$vb[1:3,] <- sweep(t(ME_msh$vb[1:3,]), 2, DRA_me_pca$center) %*% DRA_me_pca$rotation %>% t()
DRA_AOTU_msh_xform <- AOTU_msh
DRA_AOTU_msh_xform$vb[1:3,] <- sweep(t(AOTU_msh$vb[1:3,]), 2, DRA_me_pca$center) %*% DRA_me_pca$rotation %>% t()
DRA_ME_L_msh_xform <- ME_L_msh
DRA_ME_L_msh_xform$vb[1:3,] <- sweep(t(ME_L_msh$vb[1:3,]), 2, DRA_me_pca$center) %*% DRA_me_pca$rotation %>% t()
DRA_PLP_R_msh_xform <- PLP_R_msh
DRA_PLP_R_msh_xform$vb[1:3,] <- sweep(t(PLP_R_msh$vb[1:3,]), 2, DRA_me_pca$center) %*% DRA_me_pca$rotation %>% t()
# - DRA axes
DRA_axis_ori <- c(-110000, -50000, -40000)
DRA_axis_lat <- -DRA_me_pca$rotation[1,] * 15000
DRA_axis_dor <- DRA_me_pca$rotation[2,] * -15000
DRA_axis_post <- DRA_me_pca$rotation[3,] * 15000
# - scale bar
DRA_xAng <- -30 #rotation angle around x-axis, align with long axis of ME
DRA_xAngRot <- (DRA_xAng - 90)/180*pi
DRA_xRot <- matrix(c(1,0,0,
0, cos(DRA_xAngRot), sin(DRA_xAngRot),
0, -sin(DRA_xAngRot), cos(DRA_xAngRot)), ncol = 3, byrow = T)
DRA_xAngRot2 <- DRA_xAng/180*pi
DRA_xRot2 <- matrix(c(1,0,0,
0, cos(DRA_xAngRot2), sin(DRA_xAngRot2),
0, -sin(DRA_xAngRot2), cos(DRA_xAngRot2)), ncol = 3, byrow = T)
# top view
DRA_xAng_top <- 30
DRA_xAngRot_top <- (DRA_xAng_top)/180*pi
DRA_xRot_top <- matrix(c(1,0,0,
0, cos(DRA_xAngRot_top), sin(DRA_xAngRot_top),
0, -sin(DRA_xAngRot_top), cos(DRA_xAngRot_top)), ncol = 3, byrow = T)
DRA_yAng_top <- 90
DRA_yAngRot_top <- DRA_yAng_top/180*pi
DRA_yRot_top <- matrix(c(cos(DRA_yAngRot_top), 0, sin(DRA_yAngRot_top),
0, 1, 0,
-sin(DRA_yAngRot_top), 0, cos(DRA_yAngRot_top)), ncol = 3, byrow = T)
DRA_zAng_top <- 80
DRA_zAngRot_top <- (DRA_zAng_top)/180*pi
DRA_zRot_top <- matrix(c(cos(DRA_zAngRot_top), sin(DRA_zAngRot_top), 0,
-sin(DRA_zAngRot_top), cos(DRA_zAngRot_top), 0,
0, 0, 1), ncol = 3, byrow = T)
DRA_sbar <- matrix(c(0,0,0, 0,1e4,0), ncol=3,byrow=T) %*%
DRA_zRot_top %*%
DRA_yRot_top %*%
DRA_xRot_top
# side
DRA_sbar_side <- matrix(c(30000,5000,10000, 30000,5000,20000), ncol=3,byrow=T) %*%
t(matrix(c(1,0,0,
0,0,1,
0,-1,0), ncol=3, byrow=T))
#rotation angle around y-axis
DRA_yAng <- 0
DRA_yAngRot <- -DRA_yAng/180*pi
DRA_yRot <- matrix(c(cos(DRA_yAngRot), 0, sin(DRA_yAngRot),
0,1,0,
-sin(DRA_yAngRot), 0, cos(DRA_yAngRot)), ncol = 3, byrow = T)
DRA_sbar_rot90 <- matrix(c(30000,5000,10000, 30000,5000,20000), ncol=3,byrow=T)
# a coord transformation for aMe12 plot -------------------------------------------------------
# for aMe12
M5_pca <- prcomp(xyz_M5_avg)
if (M5_pca$rotation[,1] %*% c(0,1,0) < 0) {
M5_pca$rotation <- - M5_pca$rotation
}
if (t(cross3D(M5_pca$rotation[,1],M5_pca$rotation[,2])) %*% M5_pca$rotation[,3] < 0 ) {
M5_pca$rotation[,3] <- - M5_pca$rotation[,3]
}
ME_msh_xform_M5 <- ME_msh
ME_msh_xform_M5$vb[1:3,] <- sweep(t(ME_msh_xform_M5$vb[1:3,]), 2, M5_pca$center) %*% M5_pca$rotation %>% t()
AME_R_msh_xform_M5 <- AME_R_msh
AME_R_msh_xform_M5$vb[1:3,] <- sweep(t(AME_R_msh_xform_M5$vb[1:3,]), 2, M5_pca$center) %*% M5_pca$rotation %>% t()
axis_ori_M5 <- c(1e5, -1e5, 0)
axis_lat_M5 <- axis_lat %*% M5_pca$rotation
axis_dor_M5 <- axis_dor %*% M5_pca$rotation
axis_post_M5 <- axis_post %*% M5_pca$rotation
aMe12_xform <- xEucl_neu(aMe12, M5_pca$rotation, M5_pca$center)
aMe12_ME_xform <- nlapply(aMe12, function(x) subset(x, pointsinside(x,ME_msh,rval='distance') > -80000)) %>%
xEucl_neu(., M5_pca$rotation, M5_pca$center)
# exemplary cells -----------------------------------
eg_name <- c(
"Putative Tm_OTu_other 11455157 CL",
"Putative Mi15 11445262 MF",
"Putative Dm2 11448823 HL",
"Putative ML1 11472158 CL",
"Putative Tm5a 11447184 MF",
"Putative Tm5b 10356413 MF",
"Putative ML2b 11458373 CL",
"Putative Tm5c 11485095 MF",
"Putative Tm5c 11450506 CL",
"Putative Dm11 11450454 CL",
"Putative Dm9 11452428 MF",
"Putative Dm8 10208776 MF"
)