forked from NRCan/geo-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_segmentation.py
822 lines (729 loc) · 42.8 KB
/
train_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
from collections import OrderedDict
from datetime import datetime
from numbers import Number
from pathlib import Path
import shutil
import time
from typing import Sequence
from hydra.utils import to_absolute_path, instantiate
import numpy as np
from omegaconf import DictConfig
import rasterio
from sklearn.utils import compute_sample_weight
import torch
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from models.model_choice import read_checkpoint, define_model, adapt_checkpoint_to_dp_model
from tiling_segmentation import Tiler
from utils import augmentation as aug
from dataset import create_dataset
from utils.logger import InformationLogger, tsv_line, get_logger, set_tracker
from utils.loss import verify_weights, define_loss
from utils.metrics import create_metrics_dict, calculate_batch_metrics
from utils.utils import gpu_stats, get_key_def, get_device_ids, set_device
from utils.visualization import vis_from_batch
# Set the logging file
logging = get_logger(__name__) # import logging
def flatten_labels(annotations):
"""Flatten labels"""
flatten = annotations.view(-1)
return flatten
def flatten_outputs(predictions, number_of_classes):
"""Flatten the prediction batch except the prediction dimensions"""
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten
def create_dataloader(patches_folder: Path,
batch_size: int,
gpu_devices_dict: dict,
sample_size: int,
dontcare_val: int,
crop_size: int,
num_bands: int,
min_annot_perc: int,
attr_vals: Sequence,
scale: Sequence,
cfg: dict,
eval_batch_size: int = None,
dontcare2backgr: bool = False,
compute_sampler_weights: bool = False,
debug: bool = False):
"""
Function to create dataloader objects for training, validation and test datasets.
@param patches_folder: path to folder containting patches
@param batch_size: (int) batch size
@param gpu_devices_dict: (dict) dictionary where each key contains an available GPU with its ram info stored as value
@param sample_size: (int) size of patches (used to evaluate eval batch-size)
@param dontcare_val: (int) value in label to be ignored during loss calculation
@param crop_size: (int) size of one side of the square crop performed on original patch during training
@param num_bands: (int) number of bands in imagery
@param min_annot_perc: (int) minimum proportion of ground truth containing non-background information
@param attr_vals: (Sequence)
@param scale: (List) imagery data will be scaled to this min and max value (ex.: 0 to 1)
@param cfg: (dict) Parameters found in the yaml config file.
@param eval_batch_size: (int) Batch size for evaluation (val and test). Optional, calculated automatically if omitted
@param dontcare2backgr: (bool) if True, all dontcare values in label will be replaced with 0 (background value)
before training
@param compute_sampler_weights: (bool)
if True, weights will be computed from dataset patches to oversample the minority class(es) and undersample
the majority class(es) during training.
:return: trn_dataloader, val_dataloader, tst_dataloader
"""
if not patches_folder.is_dir():
raise FileNotFoundError(f'Could not locate: {patches_folder}')
experiment_name = patches_folder.stem
if not len([f for f in patches_folder.glob('*.csv')]) >= 1:
raise FileNotFoundError(f"Couldn't locate csv file(s) containing list of training data in {patches_folder}")
num_patches, patches_weight = get_num_patches(patches_path=patches_folder,
params=cfg,
min_annot_perc=min_annot_perc,
attr_vals=attr_vals,
experiment_name=experiment_name,
compute_sampler_weights=compute_sampler_weights)
if not num_patches['trn'] >= batch_size and num_patches['val'] >= batch_size:
raise ValueError(f"Number of patches is smaller than batch size")
logging.info(f"Number of patches : {num_patches}\n")
dataset_constr = create_dataset.SegmentationDataset
datasets = []
for subset in ["trn", "val", "tst"]:
# TODO: should user point to the paths of these csvs directly?
dataset_file, _ = Tiler.make_dataset_file_name(experiment_name, min_annot_perc, subset, attr_vals)
dataset_filepath = patches_folder / dataset_file
datasets.append(dataset_constr(dataset_filepath, subset, num_bands,
max_sample_count=num_patches[subset],
radiom_transform=aug.compose_transforms(params=cfg,
dataset=subset,
aug_type='radiometric'),
geom_transform=aug.compose_transforms(params=cfg,
dataset=subset,
aug_type='geometric',
dontcare=dontcare_val,
crop_size=crop_size),
totensor_transform=aug.compose_transforms(params=cfg,
dataset=subset,
scale=scale,
dontcare2backgr=dontcare2backgr,
dontcare=dontcare_val,
aug_type='totensor'),
debug=debug))
trn_dataset, val_dataset, tst_dataset = datasets
# Number of workers
if cfg.training.num_workers:
num_workers = cfg.training.num_workers
else: # https://discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813/5
num_workers = len(gpu_devices_dict.keys()) * 4 if len(gpu_devices_dict.keys()) > 1 else 4
patches_weight = torch.from_numpy(patches_weight)
sampler = torch.utils.data.sampler.WeightedRandomSampler(patches_weight.type('torch.DoubleTensor'),
len(patches_weight))
if gpu_devices_dict and not eval_batch_size:
max_pix_per_mb_gpu = 280
eval_batch_size = calc_eval_batchsize(gpu_devices_dict, batch_size, sample_size, max_pix_per_mb_gpu)
elif not eval_batch_size:
eval_batch_size = batch_size
trn_dataloader = DataLoader(trn_dataset, batch_size=batch_size, num_workers=num_workers, sampler=sampler,
drop_last=True)
val_dataloader = DataLoader(val_dataset, batch_size=eval_batch_size, num_workers=num_workers, shuffle=False,
drop_last=True)
tst_dataloader = DataLoader(tst_dataset, batch_size=eval_batch_size, num_workers=num_workers, shuffle=False,
drop_last=True) if num_patches['tst'] > 0 else None
if len(trn_dataloader) == 0 or len(val_dataloader) == 0:
raise ValueError(f"\nTrain and validation dataloader should contain at least one data item."
f"\nTrain dataloader's length: {len(trn_dataloader)}"
f"\nVal dataloader's length: {len(val_dataloader)}")
return trn_dataloader, val_dataloader, tst_dataloader
def calc_eval_batchsize(gpu_devices_dict: dict, batch_size: int, sample_size: int, max_pix_per_mb_gpu: int = 280):
"""
Calculate maximum batch size that could fit on GPU during evaluation based on thumb rule with harcoded
"pixels per MB of GPU RAM" as threshold. The batch size often needs to be smaller if crop is applied during training
@param gpu_devices_dict: dictionary containing info on GPU devices as returned by lst_device_ids (utils.py)
@param batch_size: batch size for training
@param sample_size: size of patches
@return: returns a downgraded evaluation batch size if the original batch size is considered too high compared to
the GPU's memory
"""
eval_batch_size_rd = batch_size
# get max ram for smallest gpu
smallest_gpu_ram = min(gpu_info['max_ram'] for _, gpu_info in gpu_devices_dict.items())
# rule of thumb to determine eval batch size based on approximate max pixels a gpu can handle during evaluation
pix_per_mb_gpu = (batch_size / len(gpu_devices_dict.keys()) * sample_size ** 2) / smallest_gpu_ram
if pix_per_mb_gpu >= max_pix_per_mb_gpu:
eval_batch_size = smallest_gpu_ram * max_pix_per_mb_gpu / sample_size ** 2
eval_batch_size_rd = int(eval_batch_size - eval_batch_size % len(gpu_devices_dict.keys()))
eval_batch_size_rd = 1 if eval_batch_size_rd < 1 else eval_batch_size_rd
logging.warning(f'Validation and test batch size downgraded from {batch_size} to {eval_batch_size} '
f'based on max ram of smallest GPU available')
return eval_batch_size_rd
def get_num_patches(
patches_path,
params,
min_annot_perc,
attr_vals,
experiment_name:str,
compute_sampler_weights=False
):
"""
Function to retrieve number of patches, either from config file or directly from csv listing all created patches.
@param patches_path: (str) Path to patches folder
@param params: (dict) Parameters found in the yaml config file.
@param min_annot_perc: (int) minimum annotated percentage
@param attr_vals: (list) attribute values to keep from source ground truth
@param experiment_name: (str) experiment name
@param compute_sampler_weights: (bool)
if True, weights will be computed from dataset patches to oversample the minority class(es) and undersample
the majority class(es) during training.
:return: (dict) number of patches for trn, val and tst.
"""
num_patches = {'trn': 0, 'val': 0, 'tst': 0}
weights = []
patches_weight = None
for dataset in ['trn', 'val', 'tst']:
dataset_file, _ = Tiler.make_dataset_file_name(experiment_name, min_annot_perc, dataset, attr_vals)
dataset_filepath = patches_path / dataset_file
if not dataset_filepath.is_file() and dataset == 'tst':
num_patches[dataset] = 0
logging.warning(f"No test set. File not found: {dataset_filepath}")
continue
if get_key_def(f"num_{dataset}_patches", params['training'], None) is not None:
num_patches[dataset] = params['training'][f"num_{dataset}_patches"]
with open(dataset_filepath, 'r') as datafile:
file_num_patches = len(datafile.readlines())
if num_patches[dataset] > file_num_patches:
raise IndexError(f"The number of training patches in the configuration file ({num_patches[dataset]}) "
f"exceeds the number of patches in the training dataset ({file_num_patches}).")
else:
with open(dataset_filepath, 'r') as datafile:
num_patches[dataset] = len(datafile.readlines())
with open(dataset_filepath, 'r') as datafile:
datalist = datafile.readlines()
if dataset == 'trn':
if not compute_sampler_weights:
patches_weight = np.ones(num_patches[dataset])
else:
dontcare = get_key_def("ignore_index", params['dataset'], default=-1)
for x in tqdm(range(num_patches[dataset]), desc="Computing sample weights"):
label_file = datalist[x].split(';')[1]
with rasterio.open(label_file, 'r') as label_handle:
label = label_handle.read()
label = np.where(label == dontcare, 0, label)
unique_labels = np.unique(label)
weights.append(''.join([str(int(i)) for i in unique_labels]))
patches_weight = compute_sample_weight('balanced', weights)
logging.debug(patches_weight.shape)
logging.debug(np.unique(patches_weight))
return num_patches, patches_weight
def vis_from_dataloader(vis_params,
eval_loader,
model,
ep_num,
output_path,
dataset='',
scale=None,
device=None,
vis_batch_range=None):
"""
Use a model and dataloader to provide outputs that can then be sent to vis_from_batch function to visualize performances of model, for example.
:param vis_params: (dict) Parameters found in the yaml config file useful for visualization
:param eval_loader: data loader
:param model: model to evaluate
:param ep_num: epoch index (for file naming purposes)
:param dataset: (str) 'val or 'tst'
:param device: device used by pytorch (cpu ou cuda)
:param vis_batch_range: (int) max number of patches to perform visualization on
:return:
"""
vis_path = output_path.joinpath(f'visualization')
logging.info(f'Visualization figures will be saved to {vis_path}\n')
min_vis_batch, max_vis_batch, increment = vis_batch_range
model.eval()
with tqdm(eval_loader, dynamic_ncols=True) as _tqdm:
for batch_index, data in enumerate(_tqdm):
if vis_batch_range is not None and batch_index in range(min_vis_batch, max_vis_batch, increment):
with torch.no_grad():
inputs = data["image"].to(device)
labels = data["mask"].to(device)
outputs = model(inputs)
if isinstance(outputs, OrderedDict):
outputs = outputs['out']
vis_from_batch(vis_params, inputs, outputs,
batch_index=batch_index,
vis_path=vis_path,
labels=labels,
dataset=dataset,
ep_num=ep_num,
scale=scale)
logging.info(f'Saved visualization figures.\n')
def training(train_loader,
model,
criterion,
optimizer,
scheduler,
num_classes,
batch_size,
ep_idx,
progress_log,
device,
scale,
vis_params,
debug=False):
"""
Train the model and return the metrics of the training epoch
:param train_loader: training data loader
:param model: model to train
:param criterion: loss criterion
:param optimizer: optimizer to use
:param scheduler: learning rate scheduler
:param num_classes: number of classes
:param batch_size: number of patches to process simultaneously
:param ep_idx: epoch index (for hypertrainer log)
:param progress_log: progress log file (for hypertrainer log)
:param device: device used by pytorch (cpu ou cuda)
:param scale: Scale to which values in sat img have been redefined. Useful during visualization
:param vis_params: (Dict) Parameters useful during visualization
:param debug: (bool) Debug mode
:return: Updated training loss
"""
model.train()
train_metrics = create_metrics_dict(num_classes)
for batch_index, data in enumerate(tqdm(train_loader, desc=f'Iterating train batches with {device.type}')):
progress_log.open('a', buffering=1).write(tsv_line(ep_idx, 'trn', batch_index, len(train_loader), time.time()))
inputs = data["image"].to(device)
labels = data["mask"].to(device)
# forward
optimizer.zero_grad()
outputs = model(inputs)
# added for torchvision models that output an OrderedDict with outputs in 'out' key.
# More info: https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
if isinstance(outputs, OrderedDict):
outputs = outputs['out']
# vis_batch_range: range of batches to perform visualization on. see README.md for more info.
# vis_at_eval: (bool) if True, will perform visualization at eval time, as long as vis_batch_range is valid
if vis_params['vis_batch_range'] and vis_params['vis_at_train']:
min_vis_batch, max_vis_batch, increment = vis_params['vis_batch_range']
if batch_index in range(min_vis_batch, max_vis_batch, increment):
vis_path = progress_log.parent.joinpath('visualization')
if ep_idx == 0:
logging.info(f'Visualizing on train outputs for batches in range {vis_params["vis_batch_range"]}. '
f'All images will be saved to {vis_path}\n')
vis_from_batch(vis_params, inputs, outputs,
batch_index=batch_index,
vis_path=vis_path,
labels=labels,
dataset='trn',
ep_num=ep_idx + 1,
scale=scale)
loss = criterion(outputs, labels) if num_classes > 1 else criterion(outputs, labels.unsqueeze(1).float())
train_metrics['loss'].update(loss.item(), batch_size)
if device.type == 'cuda' and debug:
res, mem = gpu_stats(device=device.index)
logging.debug(OrderedDict(trn_loss=f"{train_metrics['loss'].average():.2f}",
gpu_perc=f"{res['gpu']} %",
gpu_RAM=f"{mem['used'] / (1024 ** 2):.0f}/{mem['total'] / (1024 ** 2):.0f} MiB",
lr=optimizer.param_groups[0]['lr'],
img=data["image"].numpy().shape,
smpl=data["mask"].numpy().shape,
bs=batch_size,
out_vals=np.unique(outputs[0].argmax(dim=0).detach().cpu().numpy()),
gt_vals=np.unique(labels[0].detach().cpu().numpy())))
loss.backward()
optimizer.step()
scheduler.step()
# if train_metrics["loss"].avg is not None:
# logging.info(f'Training Loss: {train_metrics["loss"].avg:.4f}')
return train_metrics
def evaluation(eval_loader,
model,
criterion,
num_classes,
batch_size,
ep_idx,
progress_log,
scale,
vis_params,
batch_metrics=None,
dataset='val',
device=None,
debug=False
):
"""
Evaluate the model and return the updated metrics
:param eval_loader: data loader
:param model: model to evaluate
:param criterion: loss criterion
:param num_classes: number of classes
:param batch_size: number of patches to process simultaneously
:param ep_idx: epoch index (for hypertrainer log)
:param progress_log: progress log file (for hypertrainer log)
:param scale: Scale to which values in sat img have been redefined. Useful during visualization
:param vis_params: (Dict) Parameters useful during visualization
:param batch_metrics: (int) Metrics computed every (int) batches. If left blank, will not perform metrics.
:param dataset: (str) 'val or 'tst'
:param device: device used by pytorch (cpu ou cuda)
:param debug: if True, debug functions will be performed
:return: (dict) eval_metrics
"""
eval_metrics = create_metrics_dict(num_classes)
model.eval()
for batch_index, data in enumerate(tqdm(eval_loader, dynamic_ncols=True, desc=f'Iterating {dataset} '
f'batches with {device.type}')):
progress_log.open('a', buffering=1).write(tsv_line(ep_idx, dataset, batch_index, len(eval_loader), time.time()))
with torch.no_grad():
inputs = data["image"].to(device)
labels = data["mask"].to(device)
outputs = model(inputs)
if isinstance(outputs, OrderedDict):
outputs = outputs['out']
# vis_batch_range: range of batches to perform visualization on. see README.md for more info.
# vis_at_eval: (bool) if True, will perform visualization at eval time, as long as vis_batch_range is valid
if vis_params['vis_batch_range'] and vis_params['vis_at_eval']:
min_vis_batch, max_vis_batch, increment = vis_params['vis_batch_range']
if batch_index in range(min_vis_batch, max_vis_batch, increment):
vis_path = progress_log.parent.joinpath('visualization')
if ep_idx == 0 and batch_index == min_vis_batch:
logging.info(f'\nVisualizing on {dataset} outputs for batches in range '
f'{vis_params["vis_batch_range"]} images will be saved to {vis_path}\n')
vis_from_batch(vis_params, inputs, outputs,
batch_index=batch_index,
vis_path=vis_path,
labels=labels,
dataset=dataset,
ep_num=ep_idx + 1,
scale=scale)
loss = criterion(outputs, labels) if num_classes > 1 else criterion(outputs, labels.unsqueeze(1).float())
eval_metrics['loss'].update(loss.item(), batch_size)
if (dataset == 'val') and (batch_metrics is not None):
# Compute metrics every n batches. Time-consuming.
if not batch_metrics <= len(eval_loader):
logging.error(f"\nBatch_metrics ({batch_metrics}) is smaller than batch size "
f"{len(eval_loader)}. Metrics in validation loop won't be computed")
if (batch_index + 1) % batch_metrics == 0: # +1 to skip val loop at very beginning
eval_metrics = calculate_batch_metrics(
predictions=outputs,
gts=labels,
n_classes=num_classes,
metric_dict=eval_metrics
)
elif dataset == 'tst':
eval_metrics = calculate_batch_metrics(
predictions=outputs,
gts=labels,
n_classes=num_classes,
metric_dict=eval_metrics
)
logging.debug(OrderedDict(dataset=dataset, loss=f'{eval_metrics["loss"].avg:.4f}'))
if debug and device.type == 'cuda':
res, mem = gpu_stats(device=device.index)
logging.debug(OrderedDict(
device=device, gpu_perc=f"{res['gpu']} %",
gpu_RAM=f"{mem['used']/(1024**2):.0f}/{mem['total']/(1024**2):.0f} MiB"
))
if eval_metrics['loss'].average():
logging.info(f"\n{dataset} Loss: {eval_metrics['loss'].average():.4f}")
if batch_metrics is not None or dataset == 'tst':
logging.info(f"\n{dataset} precision: {eval_metrics['precision'].average():.4f}")
logging.info(f"\n{dataset} recall: {eval_metrics['recall'].average():.4f}")
logging.info(f"\n{dataset} fscore: {eval_metrics['fscore'].average():.4f}")
logging.info(f"\n{dataset} iou: {eval_metrics['iou'].average():.4f}")
return eval_metrics
def train(cfg: DictConfig) -> None:
"""
Function to train and validate a model for semantic segmentation.
-------
1. Model is instantiated and checkpoint is loaded from path, if provided in
`your_config.yaml`.
2. GPUs are requested according to desired amount of `num_gpus` and
available GPUs.
3. If more than 1 GPU is requested, model is cast to DataParallel model
4. Dataloaders are created with `create_dataloader()`
5. Loss criterion, optimizer and learning rate are set with
`set_hyperparameters()` as requested in `config.yaml`.
5. Using these hyperparameters, the application will try to minimize the
loss on the training data and evaluate every epoch on the validation
data.
6. For every epoch, the application shows and logs the loss on "trn" and
"val" datasets.
7. For every epoch (if `batch_metrics: 1`), the application shows and logs
the accuracy, recall and f-score on "val" dataset. Those metrics are
also computed on each class.
8. At the end of the training process, the application shows and logs the
accuracy, recall and f-score on "tst" dataset. Those metrics are also
computed on each class.
-------
:param cfg: (dict) Parameters found in the yaml config file.
"""
now = datetime.now().strftime("%Y-%m-%d_%H-%M")
# MANDATORY PARAMETERS
class_keys = len(get_key_def('classes_dict', cfg['dataset']).keys())
num_classes = class_keys if class_keys == 1 else class_keys + 1 # +1 for background(multiclass mode)
modalities = get_key_def('bands', cfg['dataset'], default=("red", "blue", "green"), expected_type=Sequence)
num_bands = len(modalities)
batch_size = get_key_def('batch_size', cfg['training'], expected_type=int)
eval_batch_size = get_key_def('eval_batch_size', cfg['training'], expected_type=int, default=batch_size)
num_epochs = get_key_def('max_epochs', cfg['training'], expected_type=int)
# OPTIONAL PARAMETERS
debug = get_key_def('debug', cfg)
task = get_key_def('task', cfg['general'], default='segmentation')
dontcare_val = get_key_def("ignore_index", cfg['dataset'], default=-1)
scale = get_key_def('scale_data', cfg['augmentation'], default=[0, 1])
batch_metrics = get_key_def('batch_metrics', cfg['training'], default=None)
crop_size = get_key_def('crop_size', cfg['augmentation'], default=None)
compute_sampler_weights = get_key_def('compute_sampler_weights', cfg['training'], default=False, expected_type=bool)
# MODEL PARAMETERS
checkpoint_stack = [""]
class_weights = get_key_def('class_weights', cfg['dataset'], default=None)
if cfg.loss.is_binary and not num_classes == 1:
raise ValueError(f"Parameter mismatch: a binary loss was chosen for a {num_classes}-class task")
elif not cfg.loss.is_binary and num_classes == 1:
raise ValueError(f"Parameter mismatch: a multiclass loss was chosen for a 1-class (binary) task")
del cfg.loss.is_binary # prevent exception at instantiation
optimizer = get_key_def('optimizer_name', cfg['optimizer'], default='adam', expected_type=str) # TODO change something to call the function
pretrained = get_key_def('pretrained', cfg['model'], default=True, expected_type=(bool, str))
train_state_dict_path = get_key_def('state_dict_path', cfg['training'], default=None, expected_type=str)
state_dict_strict = get_key_def('state_dict_strict_load', cfg['training'], default=True, expected_type=bool)
dropout_prob = get_key_def('factor', cfg['scheduler']['params'], default=None, expected_type=float)
# if error
if train_state_dict_path and not Path(train_state_dict_path).is_file():
raise logging.critical(
FileNotFoundError(f'\nCould not locate pretrained checkpoint for training: {train_state_dict_path}')
)
if class_weights:
verify_weights(num_classes, class_weights)
step_size = get_key_def('step_size', cfg['scheduler']['params'], default=4, expected_type=int)
gamma = get_key_def('gamma', cfg['scheduler']['params'], default=0.9, expected_type=float)
# GPU PARAMETERS
num_devices = get_key_def('num_gpus', cfg['training'], default=0)
if num_devices and not num_devices >= 0:
raise ValueError("\nMissing mandatory num gpus parameter")
max_used_ram = get_key_def('max_used_ram', cfg['training'], default=15)
max_used_perc = get_key_def('max_used_perc', cfg['training'], default=15)
# LOGGING PARAMETERS
run_name = get_key_def(['tracker', 'run_name'], cfg, default='gdl')
tracker_uri = get_key_def(['tracker', 'uri'], cfg, default=None, expected_type=str)
experiment_name = get_key_def('project_name', cfg['general'], default='gdl-training')
# PARAMETERS FOR PATCHES
patches_size = get_key_def("patch_size", cfg['tiling'], expected_type=int, default=256)
min_annot_perc = get_key_def('min_annot_perc', cfg['tiling'], expected_type=Number, default=0)
attr_vals = get_key_def('attribute_values', cfg['dataset'], None, expected_type=(Sequence, int))
data_path = get_key_def('raw_data_dir', cfg['dataset'], to_path=True, validate_path_exists=True)
tiling_root_dir = get_key_def('tiling_data_dir', cfg['tiling'], default=data_path, to_path=True,
validate_path_exists=True)
logging.info("\nThe tiling directory used '{}'".format(tiling_root_dir))
tiling_dir = tiling_root_dir / experiment_name
# visualization parameters
vis_at_train = get_key_def('vis_at_train', cfg['visualization'], default=False)
vis_at_eval = get_key_def('vis_at_evaluation', cfg['visualization'], default=False)
vis_batch_range = get_key_def('vis_batch_range', cfg['visualization'], default=None)
vis_at_checkpoint = get_key_def('vis_at_checkpoint', cfg['visualization'], default=False)
ep_vis_min_thresh = get_key_def('vis_at_ckpt_min_ep_diff', cfg['visualization'], default=1)
vis_at_ckpt_dataset = get_key_def('vis_at_ckpt_dataset', cfg['visualization'], 'val')
colormap_file = get_key_def('colormap_file', cfg['visualization'], None)
heatmaps = get_key_def('heatmaps', cfg['visualization'], False)
heatmaps_inf = get_key_def('heatmaps', cfg['inference'], False)
grid = get_key_def('grid', cfg['visualization'], False)
mean = get_key_def('mean', cfg['augmentation']['normalization'])
std = get_key_def('std', cfg['augmentation']['normalization'])
vis_params = {'colormap_file': colormap_file, 'heatmaps': heatmaps, 'heatmaps_inf': heatmaps_inf, 'grid': grid,
'mean': mean, 'std': std, 'vis_batch_range': vis_batch_range, 'vis_at_train': vis_at_train,
'vis_at_eval': vis_at_eval, 'ignore_index': dontcare_val, 'inference_input_path': None}
# automatic model naming with unique id for each training
config_path = None
for list_path in cfg.general.config_path:
if list_path['provider'] == 'main':
config_path = list_path['path']
default_output_path = Path(to_absolute_path(f'{tiling_dir}/model/{experiment_name}/{run_name}'))
output_path = get_key_def('save_weights_dir', cfg['general'], default=default_output_path, to_path=True)
if output_path.is_dir():
last_mod_time_suffix = datetime.fromtimestamp(output_path.stat().st_mtime).strftime('%Y%m%d-%H%M%S')
archive_output_path = output_path.parent / f"{output_path.stem}_{last_mod_time_suffix}"
shutil.move(output_path, archive_output_path)
output_path.mkdir(parents=True, exist_ok=False)
logging.info(f'\nModel will be saved to: {output_path}')
if debug:
logging.warning(f'\nDebug mode activated. Some debug features may mobilize extra disk space and '
f'cause delays in execution.')
if dontcare_val < 0 and vis_batch_range:
logging.warning(f'\nVisualization: expected positive value for ignore_index, got {dontcare_val}.'
f'\nWill be overridden to 255 during visualization only. Problems may occur.')
# overwrite dontcare values in label if loss doens't implement ignore_index
dontcare2backgr = False if 'ignore_index' in cfg.loss.keys() else True
# Will check if batch size needs to be a lower value only if cropping patches during training
calc_eval_bs = True if crop_size else False
# Set device(s)
gpu_devices_dict = get_device_ids(num_devices)
device = set_device(gpu_devices_dict=gpu_devices_dict)
# INSTANTIATE MODEL AND LOAD CHECKPOINT FROM PATH
checkpoint = read_checkpoint(train_state_dict_path)
model = define_model(
net_params=cfg.model,
in_channels=num_bands,
out_classes=num_classes,
main_device=device,
devices=list(gpu_devices_dict.keys()),
checkpoint_dict=checkpoint,
checkpoint_dict_strict_load=state_dict_strict
)
criterion = define_loss(loss_params=cfg.loss, class_weights=class_weights)
criterion = criterion.to(device)
optimizer = instantiate(cfg.optimizer, params=model.parameters())
lr_scheduler = optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=step_size, gamma=gamma)
logging.info(f'\nInstantiated {cfg.model._target_} model with {num_bands} input channels and {num_classes} output '
f'classes.')
logging.info(f'Creating dataloaders from data in {tiling_dir}...\n')
trn_dataloader, val_dataloader, tst_dataloader = create_dataloader(patches_folder=tiling_dir,
batch_size=batch_size,
eval_batch_size=eval_batch_size,
gpu_devices_dict=gpu_devices_dict,
sample_size=patches_size,
dontcare_val=dontcare_val,
crop_size=crop_size,
num_bands=num_bands,
min_annot_perc=min_annot_perc,
attr_vals=attr_vals,
scale=scale,
cfg=cfg,
dontcare2backgr=dontcare2backgr,
compute_sampler_weights=compute_sampler_weights,
debug=debug)
# Save tracking
set_tracker(mode='train', type='mlflow', task='segmentation', experiment_name=experiment_name, run_name=run_name,
tracker_uri=tracker_uri, params=cfg,
keys2log=['general', 'training', 'dataset', 'model', 'optimizer', 'scheduler', 'augmentation'])
trn_log, val_log, tst_log = [InformationLogger(dataset) for dataset in ['trn', 'val', 'tst']]
since = time.time()
best_loss = 999
last_vis_epoch = 0
progress_log = output_path / 'progress.log'
if not progress_log.exists():
progress_log.open('w', buffering=1).write(tsv_line('ep_idx', 'phase', 'iter', 'i_p_ep', 'time')) # Add header
# VISUALIZATION: generate pngs of inputs, labels and outputs
if vis_batch_range is not None:
# Make sure user-provided range is a tuple with 3 integers (start, finish, increment).
# Check once for all visualization tasks.
if not len(vis_batch_range) == 3 and all(isinstance(x, int) for x in vis_batch_range):
raise logging.critical(
ValueError(f'\nVis_batch_range expects three integers in a list: start batch, end batch, increment.'
f'Got {vis_batch_range}')
)
vis_at_init_dataset = get_key_def('vis_at_init_dataset', cfg['visualization'], 'val')
# Visualization at initialization. Visualize batch range before first eopch.
if get_key_def('vis_at_init', cfg['visualization'], False):
logging.info(f'\nVisualizing initialized model on batch range {vis_batch_range} '
f'from {vis_at_init_dataset} dataset...\n')
vis_from_dataloader(vis_params=vis_params,
eval_loader=val_dataloader if vis_at_init_dataset == 'val' else tst_dataloader,
model=model,
ep_num=0,
output_path=output_path,
dataset=vis_at_init_dataset,
scale=scale,
device=device,
vis_batch_range=vis_batch_range)
for epoch in range(0, num_epochs):
logging.info(f'\nEpoch {epoch}/{num_epochs - 1}\n' + "-" * len(f'Epoch {epoch}/{num_epochs - 1}'))
# creating trn_report
trn_report = training(train_loader=trn_dataloader,
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=lr_scheduler,
num_classes=num_classes,
batch_size=batch_size,
ep_idx=epoch,
progress_log=progress_log,
device=device,
scale=scale,
vis_params=vis_params,
debug=debug)
if 'trn_log' in locals(): # only save the value if a tracker is setup
trn_log.add_values(trn_report, epoch, ignore=['precision', 'recall', 'fscore', 'iou'])
val_report = evaluation(eval_loader=val_dataloader,
model=model,
criterion=criterion,
num_classes=num_classes,
batch_size=batch_size,
ep_idx=epoch,
progress_log=progress_log,
batch_metrics=batch_metrics,
dataset='val',
device=device,
scale=scale,
vis_params=vis_params,
debug=debug)
val_loss = val_report['loss'].average()
if 'val_log' in locals(): # only save the value if a tracker is setup
if batch_metrics is not None:
val_log.add_values(val_report, epoch)
else:
val_log.add_values(val_report, epoch, ignore=['precision', 'recall', 'fscore', 'iou'])
if val_loss < best_loss:
logging.info("\nSave checkpoint with a validation loss of {:.4f}".format(val_loss)) # only allow 4 decimals
# create the checkpoint file
checkpoint_tag = checkpoint_stack.pop()
filename = output_path.joinpath(checkpoint_tag)
if filename.is_file():
filename.unlink()
val_loss_string = f'{val_loss:.2f}'.replace('.', '-')
modalities_str = [str(band) for band in modalities]
checkpoint_tag = f'{experiment_name}_{num_classes}_{"_".join(modalities_str)}_{val_loss_string}.pth.tar'
filename = output_path.joinpath(checkpoint_tag)
checkpoint_stack.append(checkpoint_tag)
best_loss = val_loss
# More info:
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-torch-nn-dataparallel-models
state_dict = model.module.state_dict() if num_devices > 1 else model.state_dict()
torch.save({'epoch': epoch,
'params': cfg,
'model_state_dict': state_dict,
'best_loss': best_loss,
'optimizer_state_dict': optimizer.state_dict()}, filename)
# VISUALIZATION: generate pngs of img patches, labels and outputs as alternative to follow training
if vis_batch_range is not None and vis_at_checkpoint and epoch - last_vis_epoch >= ep_vis_min_thresh:
if last_vis_epoch == 0:
logging.info(f'\nVisualizing with {vis_at_ckpt_dataset} dataset patches on checkpointed model for'
f'batches in range {vis_batch_range}')
vis_from_dataloader(vis_params=vis_params,
eval_loader=val_dataloader if vis_at_ckpt_dataset == 'val' else tst_dataloader,
model=model,
ep_num=epoch+1,
output_path=output_path,
dataset=vis_at_ckpt_dataset,
scale=scale,
device=device,
vis_batch_range=vis_batch_range)
last_vis_epoch = epoch
cur_elapsed = time.time() - since
# logging.info(f'\nCurrent elapsed time {cur_elapsed // 60:.0f}m {cur_elapsed % 60:.0f}s')
# load checkpoint model and evaluate it on test dataset.
if int(cfg['general']['max_epochs']) > 0: # if num_epochs is set to 0, model is loaded to evaluate on test set
checkpoint = read_checkpoint(filename)
checkpoint = adapt_checkpoint_to_dp_model(checkpoint, model)
model.load_state_dict(state_dict=checkpoint['model_state_dict'])
if tst_dataloader:
tst_report = evaluation(eval_loader=tst_dataloader,
model=model,
criterion=criterion,
num_classes=num_classes,
batch_size=batch_size,
ep_idx=num_epochs,
progress_log=progress_log,
batch_metrics=batch_metrics,
dataset='tst',
scale=scale,
vis_params=vis_params,
device=device)
if 'tst_log' in locals(): # only save the value if a tracker is set up
tst_log.add_values(tst_report, num_epochs)
def main(cfg: DictConfig) -> None:
"""
Function to manage details about the training on segmentation task.
-------
1. Pre-processing TODO
2. Training process
-------
:param cfg: (dict) Parameters found in the yaml config file.
"""
# Preprocessing
# HERE the code to do for the preprocessing for the segmentation
# execute the name mode (need to be in this file for now)
train(cfg)