-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_script.py
85 lines (64 loc) · 2.3 KB
/
test_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pytest
from quadratic.quadratic_problem import *
def test_standard_form_positive_constraints_assumed():
A = np.array([
[2, 3],
[4, 5]
])
b = np.array([2, 3])
lp = LinearProblem.from_positive_constrained_params(
c=np.array([2, 5]),
n=2,
constraints=[
LinearConstraint(c=LinearCallable(a=A[0], b=b[0]), equation_type=EquationType.LE),
LinearConstraint(c=LinearCallable(a=A[1], b=b[1]), equation_type=EquationType.LE),
]
)
standard_lp, _ = lp.to_standard_form()
assert standard_lp.n == 4
assert standard_lp.calc_f_at(np.array((1, 2, 1, 2))) == 12
assert (standard_lp.calc_constraints_at(np.array((1, 2, 1, 2))) == np.array((7, 13))).all()
def test_combined_params_linear():
A = np.array([
[2, 3],
[4, 5]
])
b = np.array([2, 3])
sp = LinearProblem(
c=np.array([2, 5]),
n=2,
constraints=[
LinearConstraint(c=LinearCallable(a=A[0], b=b[0]), equation_type=EquationType.EQ),
LinearConstraint(c=LinearCallable(a=A[1], b=b[1]), equation_type=EquationType.EQ),
],
x0=None,
solution=None
)
assert np.all(sp.A == A)
assert np.all(sp.b == b)
assert sp.f(np.array([1, 1])) == 7
def test_as_equality():
c = LinearCallable(a=np.array([1, 2]), b=5)
constraint = LinearConstraint(c, equation_type=EquationType.LE)
assert constraint.as_equality().equation_type is EquationType.EQ
def test_standard_form_no_positive_constraints():
A = np.array([
[2, 3],
[4, 5]
])
b = np.array([2, 3])
lp = LinearProblem(
c=np.array([2, 5]),
n=2,
constraints=[
LinearConstraint(c=LinearCallable(a=A[0], b=b[0]), equation_type=EquationType.EQ),
LinearConstraint(c=LinearCallable(a=A[1], b=b[1]), equation_type=EquationType.EQ),
],
x0=None,
solution=None
)
standard_lp, standardizing_meta_info = lp.to_standard_form()
assert standard_lp.n == 4
assert (standardizing_meta_info.indices_of_non_positive_constrained_vars == np.array([0, 1])).all()
assert standard_lp.calc_f_at(np.array((1, 2, 2, 1))) == 3
assert (standard_lp.calc_constraints_at(np.array((1, 2, 1, 2))) == np.array((-2, -3))).all()