-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgan_manifold.py
76 lines (63 loc) · 2.63 KB
/
gan_manifold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
from criteria.id_loss import IDLoss
from criteria.lpips.lpips import LPIPS
from functools import partial
from matplotlib import pyplot as plt
from torchvision import transforms as T
from tqdm import tqdm
from config import cfgs, create_default_config
from models.StyleGANWrapper import StyleGAN, show_torch_img
class GANmetric:
def __init__(self, sg, metric = "lpips",
):
self.device = sg.device
self.metric = metric
self.sg = sg
self.set_metric_func(metric = metric)
self.transform = T.Resize((256,256))
# "cuda" if torch.cuda.is_available() else "cpu"
def set_metric_func(self, metric = "lpips"):
if metric == "lpips":
self.metric_func = LPIPS(net_type='vgg').to(self.device).eval()
elif metric == "arcface":
self.metric_func = IDLoss().to(self.device).eval()
def distance_func(self,w, w0):
img0 = self.transform(self.sg.synthesize(w0))
img = self.transform(self.sg.synthesize(w))
return self.metric_func(img0, img) #**2 ## squared distance func
def jacobian(self, w0):
dfunc = partial(self.distance_func, w0 = w0)
H = torch.autograd.functional.jacobian(dfunc, w0)
return H
def hessian(self, w0):
dfunc = partial(self.distance_func, w0 = w0)
H = torch.autograd.functional.hessian(dfunc, w0)
return H
def get_tranformation_matrix(self,num_samples = 1000):
w_mean = self.sg.get_mean_latent(num_samples = num_samples)
H = self.hessian(w_mean)
U,s,Vh = torch.svd(H)
return U, s
def load_transformation_matrix(results,cfg,
force_rerun = False):
print(["INFO Using LIPS hessian"])
if "U" in results.keys() and not force_rerun:
return results.U
else:
print("\n---------------------------------------------\n")
print("Now calculating global Hessians for", cfg.sgmodel)
latent_transforms = {}
sg = StyleGAN(cfg.sg_path, transformation_matrix=None ,latentspace_type = cfg.latent_space)
gan_metric = GANmetric(sg)
U, s = gan_metric.get_tranformation_matrix(
num_samples = 1000,
)
U = U.detach().cpu()
latent_transforms[cfg.sgmodel+"-"+cfg.latent_space] = U
results.U = U
results.lpips_H_s = s
torch.save(results,cfg.results_path)
# torch.save(latent_transforms, out_path)
print("Hessians saved to", cfg.results_path)
print("\n---------------------------------------------\n")
return U