-
Notifications
You must be signed in to change notification settings - Fork 0
/
_main.Rmd
16642 lines (12914 loc) · 668 KB
/
_main.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "*Statistical Rethinking* with brms, ggplot2, and the tidyverse"
subtitle: "version 1.0.0"
author: ["A Solomon Kurz"]
date: "`r Sys.Date()`"
site: bookdown::bookdown_site
output: bookdown::gitbook
documentclass: book
link-citations: yes
github-repo: ASKURZ/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse
twitter-handle: SolomonKurz
description: "This project is an attempt to re-express the code in McElreath’s textbook. His models are re-fit in brms, plots are redone with ggplot2, and the general data wrangling code predominantly follows the tidyverse style."
---
# This is a love letter {-}
I love McElreath’s [*Statistical Rethinking* text](http://xcelab.net/rm/statistical-rethinking/). It's the entry-level textbook for applied researchers I spent years looking for. McElreath's [freely-available lectures](https://www.youtube.com/channel/UCNJK6_DZvcMqNSzQdEkzvzA/playlists) on the book are really great, too.
However, I prefer using Bürkner’s [brms package](https://github.com/paul-buerkner/brms) when doing Bayesian regression in R. [It's just spectacular](http://andrewgelman.com/2017/01/10/r-packages-interfacing-stan-brms/). I also prefer plotting with Wickham's [ggplot2](https://cran.r-project.org/package=ggplot2), and coding with functions and principles from the [tidyverse](https://www.tidyverse.org), which you might learn about [here](http://style.tidyverse.org) or [here](http://r4ds.had.co.nz/transform.html).
So, this project is an attempt to reexpress the code in McElreath’s textbook. His models are re-fit with brms, the figures are reproduced or reimagined with ggplot2, and the general data wrangling code now predominantly follows the tidyverse style.
## Why this? {-}
I’m not a statistician and I have no formal background in computer science. Though I benefited from a suite of statistics courses in grad school, a large portion of my training has been outside of the classroom, working with messy real-world data, and searching online for help. One of the great resources I happened on was [idre, the UCLA Institute for Digital Education](https://stats.idre.ucla.edu), which offers an online portfolio of [richly annotated textbook examples](https://stats.idre.ucla.edu/other/examples/). Their online tutorials are among the earliest inspirations for this project. We need more resources like them.
With that in mind, one of the strengths of McElreath’s text is its thorough integration with the [rethinking package](https://github.com/rmcelreath/rethinking). The rethinking package is a part of the R ecosystem, which is great because R is free and open source. And McElreath has made the source code for rethinking [publically available](https://github.com/rmcelreath/rethinking), too. Since he completed his text, [many other packages have been developed](https://www.youtube.com/watch?v=pKZLJPrZLhU&t=29073s&frags=pl%2Cwn) to help users of the R ecosystem interface with [Stan](https://mc-stan.org). Of those alternative packages, I think Bürkner’s [brms](https://github.com/paul-buerkner/brms) is the best for general-purpose Bayesian data analysis. It’s flexible, uses reasonably-approachable syntax, has sensible defaults, and offers a vast array of post-processing convenience functions. And brms has only gotten [better over time](https://github.com/paul-buerkner/brms/blob/master/NEWS.md). To my knowledge, there are no textbooks on the market that highlight the brms package, which seems like an evil worth correcting.
In addition, McElreath’s data wrangling code is based in the base R style and he made most of his figures with base R plots. Though there are benefits to sticking close to base R functions (e.g., fewer dependencies leading to a lower likelihood that your code will break in the future), there are downsides. [For beginners, base R functions can be difficult both to learn and to read](http://varianceexplained.org/r/teach-tidyverse/). Happily, in recent years Hadley Wickham and others have been developing a group of packages collectively called the [tidyverse](https://www.tidyverse.org). These tidyverse packages (e.g., [dplyr](https://dplyr.tidyverse.org), [tidyr](https://tidyr.tidyverse.org), [purrr](https://purrr.tidyverse.org)) were developed according to an [underlying philosophy](https://cran.r-project.org/package=tidyverse/vignettes/manifesto.html) and they are designed to work together coherently and seamlessly. Though [not all](https://news.ycombinator.com/item?id=16421295) within the R community share this opinion, I am among those who think the tidyverse style of coding is generally [easier to learn and sufficiently powerful](http://varianceexplained.org/r/teach-tidyverse/) that these packages can accommodate the bulk of your data needs. I also find tidyverse-style syntax easier to read. And of course, the widely-used [ggplot2 package](https://ggplot2.tidyverse.org) is part of the tidyverse, too.
To be clear, students can get a great education in both Bayesian statistics and programming in R with McElreath’s text just the way it is. Just go slow, work through all the examples, and read the text closely. It’s a pedagogical boon. I could not have done better or even closely so. But what I can offer is a parallel introduction on how to fit the statistical models with the ever-improving and already-quite-impressive brms package. I can throw in examples of how to perform other operations according to the ethic of the tidyverse. And I can also offer glimpses of some of the other great packages in the R + Stan ecosystem, such as [loo](https://github.com/stan-dev/loo), [bayesplot](https://github.com/stan-dev/bayesplot), and [tidybayes](https://github.com/mjskay/tidybayes).
## My assumptions about you {-}
If you’re looking at this project, I’m guessing you’re either a graduate student, a post-graduate academic, or a researcher of some sort. So I’m presuming you have at least a 101-level foundation in statistics. If you’re rusty, consider checking out Legler and Roback’s free bookdown text, [*Broadening Your Statistical Horizons*](https://bookdown.org/roback/bookdown-bysh/) before diving into *Statistical Rethinking*. I’m also assuming you understand the rudiments of R and have at least a vague idea about what the tidyverse is. If you’re totally new to R, consider starting with Peng’s [*R Programming for Data Science*](https://bookdown.org/rdpeng/rprogdatascience/). And the best introduction to the tidyvese-style of data analysis I’ve found is Grolemund and Wickham’s [*R for Data Science*](http://r4ds.had.co.nz), which I extensively link to throughout this project.
That said, you do not need to be totally fluent in statistics or R. Otherwise why would you need this project, anyway? IMO, the most important things are curiosity, a willingness to try, and persistent tinkering. I love this stuff. Hopefully you will, too.
## How to use and understand this project {-}
This project is not meant to stand alone. It's a supplement to McElreath’s [*Statistical Rethinking* text](http://xcelab.net/rm/statistical-rethinking/). I follow the structure of his text, chapter by chapter, translating his analyses into brms and tidyverse code. However, some of the sections in the text are composed entirely of equations and prose, leaving us nothing to translate. When we run into those sections, the corresponding sections in this project will sometimes be blank or omitted, though I do highlight some of the important points in quotes and prose of my own. So I imagine students might reference this project as they progress through McElreath’s text. I also imagine working data analysts might use this project in conjunction with the text as they flip to the specific sections that seem relevant to solving their data challenges.
I reproduce the bulk of the figures in the text, too. The plots in the first few chapters are the closest to those in the text. However, I’m passionate about data visualization and like to play around with [color palettes](https://github.com/EmilHvitfeldt/r-color-palettes), formatting templates, and other conventions quite a bit. As a result, the plots in each chapter have their own look and feel. For more on some of these topics, check out chapters [3](http://r4ds.had.co.nz/data-visualisation.html), [7](http://r4ds.had.co.nz/exploratory-data-analysis.html), and [28](http://r4ds.had.co.nz/graphics-for-communication.html) in *R4DS*, Healy’s [*Data Visualization: A practical introduction*](https://socviz.co), or Wilke's [*Fundamentals of Data Visualization*](https://serialmentor.com/dataviz/).
In this project, I use a handful of formatting conventions gleaned from [*R4DS*](http://r4ds.had.co.nz/introduction.html#running-r-code), [*The tidyverse style guide*](http://style.tidyverse.org), and [*R Markdown: The Definitive Guide*](https://bookdown.org/yihui/rmarkdown/software-info.html).
* R code blocks and their output appear in a gray background. E.g.,
```{r}
2 + 2 == 5
```
* Functions are in a typewriter font and followed by parentheses, all atop a gray background (e.g., `brm()`).
* When I want to make explicit the package a given function comes from, I insert the double-colon operator `::` between the package name and the function (e.g., `tidybayes::mode_hdi()`).
* R objects, such as data or function arguments, are in typewriter font atop gray backgrounds (e.g., `chimpanzees`, `.width = .5`).
* You can detect hyperlinks by their typical [blue-colored font](https://www.youtube.com/watch?v=40o0_0XTB6E&t=15s&frags=pl%2Cwn).
* In the text, McElreath indexed his models with names like `m4.1` (i.e., the first model of Chapter 4). I primarily followed that convention, but replaced the `m` with a `b` to stand for the brms package.
## You can do this, too {-}
This project is powered by Yihui Xie's [bookdown package](https://bookdown.org), which makes it easy to turn R markdown files into HTML, PDF, and EPUB. Go [here](https://bookdown.org/yihui/bookdown/) to learn more about bookdown. While you're at it, also check out Xie, Allaire, and Grolemund's [*R Markdown: The Definitive Guide*](https://bookdown.org/yihui/rmarkdown/). And if you're unacquainted with GitHub, check out Jenny Bryan's [*Happy Git and GitHub for the useR*](http://happygitwithr.com). I’ve even [blogged](https://solomonkurz.netlify.com/post/how-bookdown/) about what it was like putting together the first version of this project.
The source code of the project is available [here](https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse).
## We have updates {-}
I released the initial 0.9.0 version of this project In September 26, 2018. Welcome to 1.0.0! Here are some of the major changes:
* All models have been refit with the current official version of brms, 2.8.0.
* Adopting the `seed` argument within the `brm()` function has made the model results more reproducible.
* The [loo package](https://github.com/stan-dev/loo) has been updated. As a consequence, our workflow for the WAIC and LOO has changed, too.
* I have improved the brms alternative to McElreath’s `coeftab()` function.
* I made better use of the tidyverse, especially some of the [purrr](https://purrr.tidyverse.org/) functions.
* Particularly in the later chapters, there’s a
greater emphasis on functions from the [tidybayes package](http://mjskay.github.io/tidybayes/).
* Chapter 11 contains the updated brms 2.8.0 workflow for making custom distributions, using the beta-binomial model as the example.
* Chapter 12 has a new bonus section contrasting different methods for working with multilevel posteriors.
* Chapter 14 has a new bonus section introducing Bayesian meta-analysis and linking it to multilevel and measurement-error models.
* With the help of others within the community, I’ve corrected many typos and streamlined some of the code (e.g., [dropped an unnecessary use of the `mi()` function in section 14.2.1](https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse/issues/21))
* And in some cases, I’ve corrected sections that were just plain wrong (e.g., some of my initial attempts in section 3.3 were incorrect).
Even though I’m comfortable calling this the 1.0.0 version of the project, there’s room for improvement. There are still two models that need work. The current solution for model 10.6 is [wrong](https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse/issues/5), which I try to make clear in the prose. It also appears that the Gaussian process model from section 13.4 is off. Both models are beyond my current skill set and [friendly suggestions are welcome](https://github.com/ASKurz/Statistical_Rethinking_with_brms_ggplot2_and_the_tidyverse/issues). In addition to modeling concerns, typos may yet be looming and I’m sure there are places where the code could be made more streamlined, more elegant, or just more in-line with the tidyverse style. Which is all to say, I hope to release better and more useful updates in the future.
Before we move on, I’d like to thank the following for their helpful contributions to this update: Paul-Christian Bürkner ([\@paul-buerkner](https://github.com/paul-buerkner)), Andrew Collier ([\@datawookie](https://github.com/datawookie)), Jeff Hammerbacher ([\@hammer](https://github.com/hammer)), Matthew Kay ([\@mjskay](https://github.com/mjskay)), TJ Mahr ([\@tjmahr](https://github.com/tjmahr)), Colin Quirk ([\@colinquirk](https://github.com/colinquirk)), Rishi Sadhir ([\@RishiSadhir](https://github.com/RishiSadhir)), Richard Torkar ([\@torkar](https://github.com/torkar)), Aki Vehtari ([\@avehtari](https://github.com/avehtari)).
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```
<!--chapter:end:index.Rmd-->
---
title: "Chapter 01. The Golem of Prague"
author: "A Solomon Kurz"
date: "`r format(Sys.Date())`"
output:
github_document
---
# The Golem of Prague
![Rabbi Loew and Golem by Mikoláš Aleš, 1899](pictures/Golem_and_Loew.jpg)
I retrieved the picture from [here](https://en.wikipedia.org/wiki/Golem#/media/File:Golem_and_Loew.jpg).
As he opened the chapter, McElreath told us that
> ultimately Judah was forced to destroy the golem, as its combination of extraordinary power with clumsiness eventually led to innocent deaths. Wiping away one letter from the inscription *emet* to spell instead *met*, "death," Rabbi Judah decommissioned the robot.
>
>## Statistical golems
>
> Scientists also make golems. Our golems rarely have physical form, but they too are often made of clay, living in silicon as computer code. These golems are scientific model. But these golems have real effects on the world, through the predictions they make and the intuitions they challenge or inspire. A concern with truth enlivens these models, but just like a golem or a modern robot, scientific models are neither true nor false, neither prophets nor charlatans. Rather they are constructs engineered for some purpose. These constructs are incredibly powerful, dutifully conducting their programmed calculations. (p. 1, *emphasis* in the original)
There are a lot of great points, themes, methods, and factoids in this text. For me, one of the most powerful themes interlaced throughout the pages is how we should be skeptical of our models. Yes, learn Bayes. Pour over this book. Fit models until late into the night. But please don’t fall into blind love with their elegance and power. If we all knew what we were doing, there’d be no need for science. For more wise deflation along these lines, do check out [*A personal essay on Bayes factors*](https://djnavarro.net/post/a-personal-essay-on-bayes-factors/), [*Between the Devil and the Deep Blue Sea: Tensions Between Scientific Judgement and Statistical Model Selection*](https://link.springer.com/article/10.1007/s42113-018-0019-z) and [*Science, statistics and the problem of "pretty good inference"*](https://www.youtube.com/watch?v=tNkmsAOn7aU), a blog, paper and talk by the inimitable [Danielle Navarro](https://twitter.com/djnavarro?lang=en).
Anyway, McElreath left us no code or figures to translate in this chapter. But before you skip off to the next one, why not invest a little time soaking in this chapter’s material by watching [McElreath present it](https://www.youtube.com/watch?v=oy7Ks3YfbDg&t=14s&frags=pl%2Cwn)? He's an engaging speaker and the material in his online lectures does not entirely overlap with that in the text.
## Reference {-}
[McElreath, R. (2016). *Statistical rethinking: A Bayesian course with examples in R and Stan.* Chapman & Hall/CRC Press.](https://xcelab.net/rm/statistical-rethinking/)
## Session info {-}
```{r}
sessionInfo()
```
```{r, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
ggplot2::theme_set(ggplot2::theme_grey())
bayesplot::color_scheme_set("blue")
```
<!--chapter:end:01.Rmd-->
---
title: "Chapter 02. Small Worlds and Large Worlds"
author: "A Solomon Kurz"
date: "`r format(Sys.Date())`"
output:
github_document
---
```{r set-options_02, echo = FALSE, cache = FALSE}
options(width = 100)
```
# Small Worlds and Large Worlds
A while back The Oatmeal put together an [infographic on Christopher Columbus](http://theoatmeal.com/comics/columbus_day). I'm no historian and cannot vouch for its accuracy, so make of it what you will.
McElreath described the thrust of this chapter this way:
> In this chapter, you will begin to build Bayesian models. The way that Bayesian models learn from evidence is arguably optimal in the small world. When their assumptions approximate reality, they also perform well in the large world. But large world performance has to be demonstrated rather than logically deduced. (p. 20)
Indeed.
## The garden of forking data
Gelman and Loken wrote a [great paper by this name](http://www.stat.columbia.edu/~gelman/research/unpublished/p_hacking.pdf).
### Counting possibilities.
Throughout this project, we'll use the [tidyverse](https://www.tidyverse.org) for data wrangling.
```{r, warning = F, message = F}
library(tidyverse)
```
If you are new to tidyverse-style syntax, possibly the oddest component is the pipe (i.e., `%>%`). I’m not going to explain the `%>%` in this project, but you might learn more about in [this brief clip](https://www.youtube.com/watch?v=9yjhxvu-pDg), starting around [minute 21:25 in this talk by Wickham](https://www.youtube.com/watch?v=K-ss_ag2k9E&t=1285s), or in [section 5.6.1 from Grolemund and Wickham’s *R for Data Science*](http://r4ds.had.co.nz/transform.html#combining-multiple-operations-with-the-pipe). Really, all of Chapter 5 of *R4DS* is just great for new R and new tidyverse users. And *R4DS* Chapter 3 is a nice introduction to plotting with ggplot2.
Other than the pipe, the other big thing to be aware of is [tibbles](https://tibble.tidyverse.org). For our purposes, think of a tibble as a data object with two dimensions defined by rows and columns. And importantly, tibbles are just special types of [data frames](https://bookdown.org/rdpeng/rprogdatascience/r-nuts-and-bolts.html#data-framesbookdown::preview_chapter("06.Rmd")). So whenever we talk about data frames, we’re also talking about tibbles. For more on the topic, check out [*R4SD*, Chapter 10](http://r4ds.had.co.nz/tibbles.html).
So, if we're willing to code the marbles as 0 = "white" 1 = "blue", we can arrange the possibility data in a tibble as follows.
```{r, warning = F, message = F}
d <-
tibble(p_1 = 0,
p_2 = rep(1:0, times = c(1, 3)),
p_3 = rep(1:0, times = c(2, 2)),
p_4 = rep(1:0, times = c(3, 1)),
p_5 = 1)
head(d)
```
You might depict the possibility data in a plot.
```{r, fig.width = 1.25, fig.height = 1.1}
d %>%
gather() %>%
mutate(x = rep(1:4, times = 5),
possibility = rep(1:5, each = 4)) %>%
ggplot(aes(x = x, y = possibility,
fill = value %>% as.character())) +
geom_point(shape = 21, size = 5) +
scale_fill_manual(values = c("white", "navy")) +
scale_x_continuous(NULL, breaks = NULL) +
coord_cartesian(xlim = c(.75, 4.25),
ylim = c(.75, 5.25)) +
theme(legend.position = "none")
```
As a quick aside, check out Suzan Baert's blog post [*Data Wrangling Part 2: Transforming your columns into the right shape*](https://suzan.rbind.io/2018/02/dplyr-tutorial-2/) for an extensive discussion on `dplyr::mutate()` and `dplyr::gather()`.
Here's the basic structure of the possibilities per marble draw.
```{r}
tibble(draw = 1:3,
marbles = 4) %>%
mutate(possibilities = marbles ^ draw) %>%
knitr::kable()
```
If you walk that out a little, you can structure the data required to approach Figure 2.2.
```{r}
(
d <-
tibble(position = c((1:4^1) / 4^0,
(1:4^2) / 4^1,
(1:4^3) / 4^2),
draw = rep(1:3, times = c(4^1, 4^2, 4^3)),
fill = rep(c("b", "w"), times = c(1, 3)) %>%
rep(., times = c(4^0 + 4^1 + 4^2)))
)
```
See what I did there with the parentheses? If you assign a value to an object in R (e.g., `dog <- 1`) and just hit return, nothing will immediately pop up in the [console](http://r4ds.had.co.nz/introduction.html#rstudio). You have to actually execute `dog` before R will return `1`. But if you wrap the code within parentheses (e.g., `(dog <- 1)`), R will perform the assignment and return the value as if you had executed `dog`.
But we digress. Here's the initial plot.
```{r, fig.width = 8, fig.height = 2}
d %>%
ggplot(aes(x = position, y = draw)) +
geom_point(aes(fill = fill),
shape = 21, size = 3) +
scale_y_continuous(breaks = 1:3) +
scale_fill_manual(values = c("navy", "white")) +
theme(panel.grid.minor = element_blank(),
legend.position = "none")
```
To my mind, the easiest way to connect the dots in the appropriate way is to make two auxiliary tibbles.
```{r}
# these will connect the dots from the first and second draws
(
lines_1 <-
tibble(x = rep((1:4), each = 4),
xend = ((1:4^2) / 4),
y = 1,
yend = 2)
)
# these will connect the dots from the second and third draws
(
lines_2 <-
tibble(x = rep(((1:4^2) / 4), each = 4),
xend = (1:4^3) / (4^2),
y = 2,
yend = 3)
)
```
We can use the `lines_1` and `lines_2` data in the plot with two `geom_segment()` functions.
```{r, fig.width = 8, fig.height = 2}
d %>%
ggplot(aes(x = position, y = draw)) +
geom_segment(data = lines_1,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_segment(data = lines_2,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_point(aes(fill = fill),
shape = 21, size = 3) +
scale_y_continuous(breaks = 1:3) +
scale_fill_manual(values = c("navy", "white")) +
theme(panel.grid.minor = element_blank(),
legend.position = "none")
```
We've generated the values for `position` (i.e., the x-axis), in such a way that they're all justified to the right, so to speak. But we'd like to center them. For `draw == 1`, we'll need to subtract 0.5 from each. For `draw == 2`, we need to reduce the scale by a factor of 4 and we'll then need to reduce the scale by another factor of 4 for `draw == 3`. The `ifelse()` function will be of use for that.
```{r}
d <-
d %>%
mutate(denominator = ifelse(draw == 1, .5,
ifelse(draw == 2, .5 / 4,
.5 / 4^2))) %>%
mutate(position = position - denominator)
d
```
We'll follow the same logic for the `lines_1` and `lines_2` data.
```{r}
(
lines_1 <-
lines_1 %>%
mutate(x = x - .5,
xend = xend - .5 / 4^1)
)
(
lines_2 <-
lines_2 %>%
mutate(x = x - .5 / 4^1,
xend = xend - .5 / 4^2)
)
```
Now the plot's looking closer.
```{r, fig.width = 8, fig.height = 2}
d %>%
ggplot(aes(x = position, y = draw)) +
geom_segment(data = lines_1,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_segment(data = lines_2,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_point(aes(fill = fill),
shape = 21, size = 3) +
scale_y_continuous(breaks = 1:3) +
scale_fill_manual(values = c("navy", "white")) +
theme(panel.grid.minor = element_blank(),
legend.position = "none")
```
For the final step, we'll use `coord_polar()` to change the [coordinate system](http://sape.inf.usi.ch/quick-reference/ggplot2/coord), giving the plot a mandala-like feel.
```{r, fig.width = 4, fig.height = 4}
d %>%
ggplot(aes(x = position, y = draw)) +
geom_segment(data = lines_1,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_segment(data = lines_2,
aes(x = x, xend = xend,
y = y, yend = yend),
size = 1/3) +
geom_point(aes(fill = fill),
shape = 21, size = 4) +
scale_fill_manual(values = c("navy", "white")) +
scale_x_continuous(NULL, limits = c(0, 4), breaks = NULL) +
scale_y_continuous(NULL, limits = c(0.75, 3), breaks = NULL) +
theme(panel.grid = element_blank(),
legend.position = "none") +
coord_polar()
```
To make our version of Figure 2.3, we'll have to add an index to tell us which paths remain logically valid after each choice. We'll call the index `remain`.
```{r, fig.width = 4, fig.height = 4}
lines_1 <-
lines_1 %>%
mutate(remain = c(rep(0:1, times = c(1, 3)),
rep(0, times = 4 * 3)))
lines_2 <-
lines_2 %>%
mutate(remain = c(rep(0, times = 4),
rep(1:0, times = c(1, 3)) %>%
rep(., times = 3),
rep(0, times = 12 * 4)))
d <-
d %>%
mutate(remain = c(rep(1:0, times = c(1, 3)),
rep(0:1, times = c(1, 3)),
rep(0, times = 4 * 4),
rep(1:0, times = c(1, 3)) %>%
rep(., times = 3),
rep(0, times = 12 * 4)))
# finally, the plot:
d %>%
ggplot(aes(x = position, y = draw)) +
geom_segment(data = lines_1,
aes(x = x, xend = xend,
y = y, yend = yend,
alpha = remain %>% as.character()),
size = 1/3) +
geom_segment(data = lines_2,
aes(x = x, xend = xend,
y = y, yend = yend,
alpha = remain %>% as.character()),
size = 1/3) +
geom_point(aes(fill = fill, alpha = remain %>% as.character()),
shape = 21, size = 4) +
# it's the alpha parameter that makes elements semitransparent
scale_alpha_manual(values = c(1/10, 1)) +
scale_fill_manual(values = c("navy", "white")) +
scale_x_continuous(NULL, limits = c(0, 4), breaks = NULL) +
scale_y_continuous(NULL, limits = c(0.75, 3), breaks = NULL) +
theme(panel.grid = element_blank(),
legend.position = "none") +
coord_polar()
```
Letting "w" = a white dot and "b" = a blue dot, we might recreate the table in the middle of page 23 like so.
```{r}
# if we make two custom functions, here, it will simplify the code within `mutate()`, below
n_blue <- function(x){
rowSums(x == "b")
}
n_white <- function(x){
rowSums(x == "w")
}
t <-
# for the first four columns, `p_` indexes position
tibble(p_1 = rep(c("w", "b"), times = c(1, 4)),
p_2 = rep(c("w", "b"), times = c(2, 3)),
p_3 = rep(c("w", "b"), times = c(3, 2)),
p_4 = rep(c("w", "b"), times = c(4, 1))) %>%
mutate(`draw 1: blue` = n_blue(.),
`draw 2: white` = n_white(.),
`draw 3: blue` = n_blue(.)) %>%
mutate(`ways to produce` = `draw 1: blue` * `draw 2: white` * `draw 3: blue`)
t %>%
knitr::kable()
```
We'll need new data for Figure 2.4. Here's the initial primary data, `d`.
```{r}
d <-
tibble(position = c((1:4^1) / 4^0,
(1:4^2) / 4^1,
(1:4^3) / 4^2),
draw = rep(1:3, times = c(4^1, 4^2, 4^3)))
(
d <-
d %>%
bind_rows(
d, d
) %>%
# here are the fill colors
mutate(fill = c(rep(c("w", "b"), times = c(1, 3)) %>% rep(., times = c(4^0 + 4^1 + 4^2)),
rep(c("w", "b"), each = 2) %>% rep(., times = c(4^0 + 4^1 + 4^2)),
rep(c("w", "b"), times = c(3, 1)) %>% rep(., times = c(4^0 + 4^1 + 4^2)))) %>%
# now we need to shift the positions over in accordance with draw, like before
mutate(denominator = ifelse(draw == 1, .5,
ifelse(draw == 2, .5 / 4,
.5 / 4^2))) %>%
mutate(position = position - denominator) %>%
# here we'll add an index for which pie wedge we're working with
mutate(pie_index = rep(letters[1:3], each = n()/3)) %>%
# to get the position axis correct for pie_index == "b" or "c", we'll need to offset
mutate(position = ifelse(pie_index == "a", position,
ifelse(pie_index == "b", position + 4,
position + 4 * 2)))
)
```
Both `lines_1` and `lines_2` require adjustments for `x` and `xend`. Our current approach is a nested `ifelse()`. Rather than copy and paste that multi-line `ifelse()` code for all four, let's wrap it in a compact function, which we'll call `move_over()`.
```{r}
move_over <- function(position, index){
ifelse(index == "a", position,
ifelse(index == "b", position + 4,
position + 4 * 2)
)
}
```
If you’re new to making your own R functions, check out [Chapter 19](http://r4ds.had.co.nz/functions.html) of *R4DS* or [Chapter 14](https://bookdown.org/rdpeng/rprogdatascience/functions.html) of *R Programming for Data Science*.
Anyway, now we'll make our new `lines_1` and `lines_2` data, for which we'll use `move_over()` to adjust their `x` and `xend` positions to the correct spots.
```{r}
(
lines_1 <-
tibble(x = rep((1:4), each = 4) %>% rep(., times = 3),
xend = ((1:4^2) / 4) %>% rep(., times = 3),
y = 1,
yend = 2) %>%
mutate(x = x - .5,
xend = xend - .5 / 4^1) %>%
# here we'll add an index for which pie wedge we're working with
mutate(pie_index = rep(letters[1:3], each = n()/3)) %>%
# to get the position axis correct for `pie_index == "b"` or `"c"`, we'll need to offset
mutate(x = move_over(position = x, index = pie_index),
xend = move_over(position = xend, index = pie_index))
)
(
lines_2 <-
tibble(x = rep(((1:4^2) / 4), each = 4) %>% rep(., times = 3),
xend = (1:4^3 / 4^2) %>% rep(., times = 3),
y = 2,
yend = 3) %>%
mutate(x = x - .5 / 4^1,
xend = xend - .5 / 4^2) %>%
# here we'll add an index for which pie wedge we're working with
mutate(pie_index = rep(letters[1:3], each = n()/3)) %>%
# to get the position axis correct for `pie_index == "b"` or `"c"`, we'll need to offset
mutate(x = move_over(position = x, index = pie_index),
xend = move_over(position = xend, index = pie_index))
)
```
For the last data wrangling step, we add the `remain` indices to help us determine which parts to make semitransparent. I'm not sure of a slick way to do this, so these are the result of brute force counting.
```{r}
d <-
d %>%
mutate(remain = c(# `pie_index == "a"`
rep(0:1, times = c(1, 3)),
rep(0, times = 4),
rep(1:0, times = c(1, 3)) %>%
rep(., times = 3),
rep(0, times = 4 * 4),
rep(c(0, 1, 0), times = c(1, 3, 4 * 3)) %>%
rep(., times = 3),
# `pie_index == "b"`
rep(0:1, each = 2),
rep(0, times = 4 * 2),
rep(1:0, each = 2) %>%
rep(., times = 2),
rep(0, times = 4 * 4 * 2),
rep(c(0, 1, 0, 1, 0), times = c(2, 2, 2, 2, 8)) %>%
rep(., times = 2),
# `pie_index == "c"`
rep(0:1, times = c(3, 1)),
rep(0, times = 4 * 3),
rep(1:0, times = c(3, 1)),
rep(0, times = 4 * 4 * 3),
rep(0:1, times = c(3, 1)) %>%
rep(., times = 3),
rep(0, times = 4)
)
)
lines_1 <-
lines_1 %>%
mutate(remain = c(rep(0, times = 4),
rep(1:0, times = c(1, 3)) %>%
rep(., times = 3),
rep(0, times = 4 * 2),
rep(1:0, each = 2) %>%
rep(., times = 2),
rep(0, times = 4 * 3),
rep(1:0, times = c(3, 1))
)
)
lines_2 <-
lines_2 %>%
mutate(remain = c(rep(0, times = 4 * 4),
rep(c(0, 1, 0), times = c(1, 3, 4 * 3)) %>%
rep(., times = 3),
rep(0, times = 4 * 8),
rep(c(0, 1, 0, 1, 0), times = c(2, 2, 2, 2, 8)) %>%
rep(., times = 2),
rep(0, times = 4 * 4 * 3),
rep(0:1, times = c(3, 1)) %>%
rep(., times = 3),
rep(0, times = 4)
)
)
```
We're finally ready to plot our Figure 2.4.
```{r, fig.width = 7, fig.height = 7}
d %>%
ggplot(aes(x = position, y = draw)) +
geom_vline(xintercept = c(0, 4, 8), color = "white", size = 2/3) +
geom_segment(data = lines_1,
aes(x = x, xend = xend,
y = y, yend = yend,
alpha = remain %>% as.character()),
size = 1/3) +
geom_segment(data = lines_2,
aes(x = x, xend = xend,
y = y, yend = yend,
alpha = remain %>% as.character()),
size = 1/3) +
geom_point(aes(fill = fill, size = draw, alpha = remain %>% as.character()),
shape = 21) +
scale_size_continuous(range = c(3, 1.5)) +
scale_alpha_manual(values = c(1/10, 1)) +
scale_fill_manual(values = c("navy", "white")) +
scale_x_continuous(NULL, limits = c(0, 12), breaks = NULL) +
scale_y_continuous(NULL, limits = c(0.75, 3.5), breaks = NULL) +
theme(panel.grid = element_blank(),
legend.position = "none") +
coord_polar()
```
### Using prior information.
> We may have prior information about the relative plausibility of each conjecture. This prior information could arise from knowledge of how the contents of the bag were generated. It could also arise from previous data. Or we might want to act as if we had prior information, so we can build conservatism into the analysis. Whatever the source, it would help to have a way to use prior information. Luckily there is a natural solution: Just multiply the prior count by the new count. (p. 25)
Here's the table in the middle of page 25.
```{r}
t <-
t %>%
rename(`previous counts` = `ways to produce`,
`ways to produce` = `draw 1: blue`) %>%
select(p_1:p_4, `ways to produce`, `previous counts`) %>%
mutate(`new count` = `ways to produce` * `previous counts`)
t %>%
knitr::kable()
```
We might update to reproduce the table a the top of page 26, like this.
```{r}
t <-
t %>%
select(p_1:p_4, `new count`) %>%
rename(`prior count` = `new count`) %>%
mutate(`factory count` = c(0, 3:0)) %>%
mutate(`new count` = `prior count` * `factory count`)
t %>%
knitr::kable()
```
To learn more about `dplyr::select()` and `dplyr::rename()`, check out Baert's exhaustive blog post [*Data Wrangling Part 1: Basic to Advanced Ways to Select Columns*](https://suzan.rbind.io/2018/01/dplyr-tutorial-1/).
### From counts to probability.
The opening sentences in this subsection are important: "It is helpful to think of this strategy as adhering to a principle of honest ignorance: *When we don't know what caused the data, potential causes that may produce the data in more ways are more plausible*" (p. 26, *emphasis* in the original).
We can define our updated plausibility as:
<center>
plausibility of ![](pictures/theta_02.png) after seeing ![](pictures/data_02.png)
$\propto$
ways ![](pictures/theta_02.png) can produce ![](pictures/data_02.png)
$\times$
prior plausibility of ![](pictures/theta_02.png)
</center>
In other words:
<center>
plausibility of $p$ after $D_{\text{new}}$ $\propto$ ways $p$ can produce $D_{\text{new}} \times$ prior plausibility of $p$
</center>
But since we have to standardize the results to get them into a probability metric, the full equation is:
$$\text{plausibility of } p \text{ after } D_{\text{new}} = \frac{\text{ ways } p \text{ can produce } D_{\text{new}} \times \text{ prior plausibility of } p}{\text{sum of the products}}$$
You might make the table in the middle of page 27 like this.
```{r}
t %>%
select(p_1:p_4) %>%
mutate(p = seq(from = 0, to = 1, by = .25),
`ways to produce data` = c(0, 3, 8, 9, 0)) %>%
mutate(plausibility = `ways to produce data` / sum(`ways to produce data`))
```
We just computed the plausibilities, but here's McElreath's R code 2.1.
```{r}
ways <- c(0, 3, 8, 9, 0)
ways / sum(ways)
```
## Building a model
We might save our globe-tossing data in a tibble.
```{r}
(d <- tibble(toss = c("w", "l", "w", "w", "w", "l", "w", "l", "w")))
```
### A data story.
> Bayesian data analysis usually means producing a story for how the data came to be. This story may be *descriptive*, specifying associations that can be used to predict outcomes, given observations. Or it may be *causal*, a theory of how come events produce other events. Typically, any story you intend to be causal may also be descriptive. But many descriptive stories are hard to interpret causally. But all data stories are complete, in the sense that they are sufficient for specifying an algorithm for simulating new data. (p. 28, *emphasis* in the original)
### Bayesian updating.
Here we'll add the cumulative number of trials, `n_trials`, and the cumulative number of successes, `n_successes` (i.e., `toss == "w"`), to the data.
```{r}
(
d <-
d %>%
mutate(n_trials = 1:9,
n_success = cumsum(toss == "w"))
)
```
Fair warning: We don’t learn the skills for making Figure 2.5 until later in the chapter. So consider the data wrangling steps in this section as something of a preview.
```{r, fig.width = 6, fig.height = 5}
sequence_length <- 50
d %>%
expand(nesting(n_trials, toss, n_success),
p_water = seq(from = 0, to = 1, length.out = sequence_length)) %>%
group_by(p_water) %>%
# you can learn more about lagging here: https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/lag or here: https://dplyr.tidyverse.org/reference/lead-lag.html
mutate(lagged_n_trials = lag(n_trials, k = 1),
lagged_n_success = lag(n_success, k = 1)) %>%
ungroup() %>%
mutate(prior = ifelse(n_trials == 1, .5,
dbinom(x = lagged_n_success,
size = lagged_n_trials,
prob = p_water)),
likelihood = dbinom(x = n_success,
size = n_trials,
prob = p_water),
strip = str_c("n = ", n_trials)
) %>%
# the next three lines allow us to normalize the prior and the likelihood,
# putting them both in a probability metric
group_by(n_trials) %>%
mutate(prior = prior / sum(prior),
likelihood = likelihood / sum(likelihood)) %>%
# plot!
ggplot(aes(x = p_water)) +
geom_line(aes(y = prior), linetype = 2) +
geom_line(aes(y = likelihood)) +
scale_x_continuous("proportion water", breaks = c(0, .5, 1)) +
scale_y_continuous("plausibility", breaks = NULL) +
theme(panel.grid = element_blank()) +
facet_wrap(~strip, scales = "free_y")
```
If it wasn't clear in the code, the dashed curves are normalized prior densities. The solid ones are normalized likelihoods. If you don't normalize (i.e., divide the density by the sum of the density), their respective heights don't match up with those in the text. Furthermore, it’s the normalization that makes them directly comparable.
To learn more about `dplyr::group_by()` and its opposite `dplyr::ungroup()`, check out [*R4DS*, Chapter 5](http://r4ds.had.co.nz/transform.html). To learn about `tidyr::expand()`, go [here](https://tidyr.tidyverse.org/reference/expand.html).
### Evaluate.
It's worth repeating the **Rethinking: Deflationary statistics** box, here.
> It may be that Bayesian inference is the best general purpose method of inference known. However, Bayesian inference is much less powerful than we'd like it to be. There is no approach to inference that provides universal guarantees. No branch of applied mathematics has unfettered access to reality, because math is not discovered, like the proton. Instead it is invented, like the shovel. (p. 32)
## Components of the model
1. a likelihood function: "the number of ways each conjecture could produce an observation"
2. one or more parameters: "the accumulated number of ways each conjecture cold produce the entire data"
3. a prior: "the initial plausibility of each conjectured cause of the data"
### Likelihood.
If you let the count of water be $w$ and the number of tosses be $n$, then the binomial likelihood may be expressed as:
$$\text{Pr} (w|n, p) = \frac{n!}{w!(n - w)!} p^w (1 - p)^{n - w}$$
Given a probability of .5, the binomial likelihood of 6 out of 9 tosses coming out water is:
```{r}
dbinom(x = 6, size = 9, prob = .5)
```
McElreath suggested we change the values of `prob`. Let's do so over the parameter space.
```{r, fig.width = 3, fig.height = 2}
tibble(prob = seq(from = 0, to = 1, by = .01)) %>%
ggplot(aes(x = prob,
y = dbinom(x = 6, size = 9, prob = prob))) +
geom_line() +
labs(x = "probability",
y = "binomial likelihood") +
theme(panel.grid = element_blank())
```
### Parameters.
McElreath started off his **Rethinking: Datum or parameter?** box with:
> It is typical to conceive of data and parameters as completely different kinds of entities. Data are measures and known; parameters are unknown and must be estimated from data. Usefully, in the Bayesian framework the distinction between a datum and a parameter is fuzzy. (p. 34)
For more in this topic, check out his lecture [*Understanding Bayesian Statistics without Frequentist Language*](https://www.youtube.com/watch?v=yakg94HyWdE&frags=pl%2Cwn).
### Prior.
> So where do priors come from? They are engineering assumptions, chosen to help the machine learn. The flat prior in Figure 2.5 is very common, but it is hardly ever the best prior. You'll see later in the book that priors that gently nudge the machine usually improve inference. Such priors are sometimes called regularizing or weakly informative priors. (p. 35)
To learn more about "regularizing or weakly informative priors," check out the [*Prior Choice Recommendations* wiki from the Stan team](https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations).
#### Overthinking: Prior as a probability distribution
McElreath said that "for a uniform prior from $a$ to $b$, the probability of any point in the interval is $1 / (b - a)$" (p. 35). Let's try that out. To keep things simple, we'll hold $a$ constant while varying the values for $b$.
```{r}
tibble(a = 0,
b = c(1, 1.5, 2, 3, 9)) %>%
mutate(prob = 1 / (b - a))
```
I like to verify things with plots.
```{r, fig.width = 8, fig.height = 2}
tibble(a = 0,
b = c(1, 1.5, 2, 3, 9)) %>%
expand(nesting(a, b), parameter_space = seq(from = 0, to = 9, length.out = 500)) %>%
mutate(prob = dunif(parameter_space, a, b),
b = str_c("b = ", b)) %>%
ggplot(aes(x = parameter_space, ymin = 0, ymax = prob)) +
geom_ribbon() +
scale_x_continuous(breaks = c(0, 1:3, 9)) +
scale_y_continuous(breaks = c(0, 1/9, 1/3, 1/2, 2/3, 1),
labels = c("0", "1/9", "1/3", "1/2", "2/3", "1")) +
theme(panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank()) +
facet_wrap(~b, ncol = 5)
```
And as we'll learn much later in the project, the $\text{Uniform} (0, 1)$ distribution is special in that we can also express it as the beta distribution for which $\alpha = 1 \text{ and } \beta = 1$. E.g.,
```{r, fig.width = 2.5, fig.height = 2}
tibble(parameter_space = seq(from = 0, to = 1, length.out = 50)) %>%
mutate(prob = dbeta(parameter_space, 1, 1)) %>%
ggplot(aes(x = parameter_space, ymin = 0, ymax = prob)) +
geom_ribbon() +
coord_cartesian(ylim = 0:2) +
theme(panel.grid = element_blank())
```
### Posterior.
If we continue to focus on the globe tossing example, the posterior probability a toss will be water may be expressed as:
$$\text{Pr} (p|w) = \frac{\text{Pr} (w|p) \text{Pr} (p)}{\text{Pr} (w)}$$
More generically and in words, this is:
$$\text{Posterior} = \frac{\text{Likelihood} \times \text{Prior}}{\text{Average Likelihood}}$$
## Making the model go
Here's the data wrangling for Figure 2.6.
```{r}
sequence_length <- 1e3
d <-
tibble(probability = seq(from = 0, to = 1, length.out = sequence_length)) %>%
expand(probability, row = c("flat", "stepped", "Laplace")) %>%
arrange(row, probability) %>%
mutate(prior = ifelse(row == "flat", 1,
ifelse(row == "stepped", rep(0:1, each = sequence_length / 2),
exp(-abs(probability - .5) / .25) / ( 2 * .25))),
likelihood = dbinom(x = 6, size = 9, prob = probability)) %>%
group_by(row) %>%
mutate(posterior = prior * likelihood / sum(prior * likelihood)) %>%
gather(key, value, -probability, -row) %>%
ungroup() %>%
mutate(key = factor(key, levels = c("prior", "likelihood", "posterior")),
row = factor(row, levels = c("flat", "stepped", "Laplace")))
```
To learn more about `dplyr::arrange()`, chech out [*R4DS*, Chapter 5.3](http://r4ds.had.co.nz/transform.html#arrange-rows-with-arrange).
In order to avoid unnecessary facet labels for the rows, it was easier to just make each column of the plot separately and then recombine them with `gridExtra::grid.arrange()`.
```{r, fig.width = 6, fig.height = 5, warning = F, message = F}
p1 <-
d %>%
filter(key == "prior") %>%
ggplot(aes(x = probability, y = value)) +
geom_line() +
scale_x_continuous(NULL, breaks = c(0, .5, 1)) +
scale_y_continuous(NULL, breaks = NULL) +
labs(subtitle = "prior") +
theme(panel.grid = element_blank(),
strip.background = element_blank(),
strip.text = element_blank()) +
facet_wrap(row ~ ., scales = "free_y", ncol = 1)
p2 <-
d %>%
filter(key == "likelihood") %>%
ggplot(aes(x = probability, y = value)) +
geom_line() +
scale_x_continuous(NULL, breaks = c(0, .5, 1)) +
scale_y_continuous(NULL, breaks = NULL) +
labs(subtitle = "likelihood") +
theme(panel.grid = element_blank(),
strip.background = element_blank(),
strip.text = element_blank()) +
facet_wrap(row ~ ., scales = "free_y", ncol = 1)
p3 <-
d %>%
filter(key == "posterior") %>%
ggplot(aes(x = probability, y = value)) +
geom_line() +
scale_x_continuous(NULL, breaks = c(0, .5, 1)) +
scale_y_continuous(NULL, breaks = NULL) +
labs(subtitle = "posterior") +
theme(panel.grid = element_blank(),
strip.background = element_blank(),
strip.text = element_blank()) +
facet_wrap(row ~ ., scales = "free_y", ncol = 1)
library(gridExtra)
grid.arrange(p1, p2, p3, ncol = 3)
```
I'm not sure if it's the same McElreath used in the text, but the formula I used for the triangle-shaped prior is the [Laplace distribution](http://ugrad.stat.ubc.ca/R/library/rmutil/html/Laplace.html) with a location of .5 and a dispersion of .25.
Also, to learn all about `dplyr::filter()`, check out Baert's [*Data Wrangling Part 3: Basic and more advanced ways to filter rows*](https://suzan.rbind.io/2018/02/dplyr-tutorial-3/).
### Grid approximation.
We just employed grid approximation over the last figure. In order to get nice smooth lines, we computed the posterior over 1000 evenly-spaced points on the probability space. Here we'll prepare for Figure 2.7 with 20.
```{r}
(d <-
tibble(p_grid = seq(from = 0, to = 1, length.out = 20), # define grid
prior = 1) %>% # define prior
mutate(likelihood = dbinom(6, size = 9, prob = p_grid)) %>% # compute likelihood at each value in grid
mutate(unstd_posterior = likelihood * prior) %>% # compute product of likelihood and prior
mutate(posterior = unstd_posterior / sum(unstd_posterior)) # standardize the posterior, so it sums to 1
)
```
Here's the right panel of Figure 2.7.
```{r, fig.width = 3, fig.height = 2.75}
d %>%
ggplot(aes(x = p_grid, y = posterior)) +
geom_point() +
geom_line() +
labs(subtitle = "20 points",
x = "probability of water",
y = "posterior probability") +
theme(panel.grid = element_blank())
```
Here it is with just 5 points, the left hand panel of Figure 2.7.
```{r, fig.width = 3, fig.height = 2.75}
tibble(p_grid = seq(from = 0, to = 1, length.out = 5),
prior = 1) %>%
mutate(likelihood = dbinom(6, size = 9, prob = p_grid)) %>%
mutate(unstd_posterior = likelihood * prior) %>%
mutate(posterior = unstd_posterior / sum(unstd_posterior)) %>%
ggplot(aes(x = p_grid, y = posterior)) +
geom_point() +
geom_line() +
labs(subtitle = "5 points",
x = "probability of water",
y = "posterior probability") +
theme(panel.grid = element_blank())
```
### Quadratic approximation.
Apply the quadratic approximation to the globe tossing data with `rethinking::map()`.
```{r, warning = F, message = F}
library(rethinking)
globe_qa <-
rethinking::map(
alist(
w ~ dbinom(9, p), # binomial likelihood
p ~ dunif(0, 1) # uniform prior
),
data = list(w = 6))
# display summary of quadratic approximation
precis(globe_qa)
```