-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sc.py
233 lines (173 loc) · 8.54 KB
/
train_sc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
from torch.optim import AdamW
import json, os
import numpy as np
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
import seaborn as sns
from utils import load_data, start_table, sentiment_mapper, plot_loss
import argparse
class BERT_CNN(nn.Module):
def __init__(self, bert_path, num_classes, filter_size, num_filters, seq_len=75, freeze_bert=False):
super(BERT_CNN, self).__init__()
self.num_classes = num_classes
self.filter_size = filter_size
self.num_filters = num_filters
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.bert = AutoModel.from_pretrained(bert_path).to(self.device)
self.cnn = nn.Conv2d(1, num_filters, kernel_size=(filter_size, self.bert.config.hidden_size), stride=1, padding=0)
self.max_pool = nn.MaxPool2d(kernel_size=(seq_len-filter_size+1, 1))
self.fc = nn.Linear(num_filters, num_classes)
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False
def forward(self, tokenized, h=None, c=None):
# batch_size = tokenized['input_ids'].size(0)
outputs = self.bert(**tokenized)
hidden_outputs, pooled_outputs = outputs[0], outputs[1]
out = self.cnn(hidden_outputs.unsqueeze(1))
out = F.relu(out)
out = self.max_pool(out)
out = out.view(out.size(0), -1) # Flattening to (batch_size, num_filters)
logits = self.fc(out)
return logits
def compute_metrics(pred, tags):
if len(pred.shape) == 2:
pred = pred.argmax(axis=-1)
accuracy = (pred == tags).mean()
print(classification_report(tags, pred, target_names=["positive", "neutral", "negative", "conflict"]))
return accuracy
def train_epoch(model, optimizer, criterion, train_loader, val_loader, device, epoch_num, print_every=50):
total_loss = 0
batch_losses = []
eval_losses = []
for idx, sample in enumerate(train_loader):
model.train()
text = sample['text']
aspect = sample['aspect']
y = sample['polarity'].to(device)
tokenized = tokenizer(text, aspect, padding="max_length", max_length=seq_len, truncation=True, return_tensors="pt").to(device)
optimizer.zero_grad()
output = model(tokenized)
loss = criterion(output, y)
loss.backward()
optimizer.step()
total_loss += loss.item()
batch_losses.append(loss.item())
if (idx+1) % print_every == 0:
# print(f"EPOCH: {epoch_num} BATCH:{idx+1}/{len(train_loader)} LOSS: {loss.item()}")
eval_loss = evaluate(model, criterion, val_loader, device)
eval_losses.append(eval_loss)
print(f"|{epoch_num:^15}|{idx+1:^15}|{loss.item():^16.4f}|{eval_loss:^15.4f}|")
plot_loss(batch_losses, "Training Loss", "Step", "Loss", plot_dir+ "/batch_loss.png")
epoch_loss = total_loss / len(train_loader)
print("-"*66 + "\n")
return model, epoch_loss, batch_losses, eval_losses
def evaluate(model, criterion, test_loader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for idx, sample in enumerate(test_loader):
text = sample['text']
aspect = sample['aspect']
y = sample['polarity'].to(device)
tokenized = tokenizer(text, aspect, padding="max_length", max_length=seq_len, truncation=True, return_tensors="pt").to(device)
output = model(tokenized)
loss = criterion(output, y)
total_loss += loss.item()
epoch_loss = total_loss / len(test_loader)
# print(f"\VAL LOSS: {epoch_loss}\n")
return epoch_loss
def evaluate_complete(model, test_loader, device):
model.eval()
outputs = None
y = None
with torch.no_grad():
for idx, sample in enumerate(test_loader):
text = sample['text']
aspect = sample['aspect']
y_ = sample['polarity'].cpu().numpy()
tokenized = tokenizer(text, aspect, padding="max_length", max_length=seq_len, truncation=True, return_tensors="pt").to(device)
output = model(tokenized).cpu().numpy()
# Concatenate to the outputs
outputs = np.concatenate((outputs, output), axis=0) if outputs is not None else output
y = np.concatenate((y, y_), axis=0) if y is not None else y_
accuracy = compute_metrics(outputs, y)
return accuracy
def predict_sample(text, aspect, model, tokenizer):
model.eval()
with torch.no_grad():
tokenized = tokenizer(text, aspect, padding="max_length", max_length=seq_len, truncation=True, return_tensors="pt").to(device)
output = model(tokenized)
output = output.argmax(dim=-1).cpu()[0].item()
mapper = json.load(open(mapper_path, "r"))
reverse_mapper = {v: k for k, v in mapper.items()}
sentiment = reverse_mapper[output]
return sentiment
def train(model, optimizer, criterion, epochs, train_loader, val_loader, device, print_every=50):
epoch_losses = []
batch_losses = []
eval_losses = []
for epoch in range(epochs):
# print(f"[INFO] STARTING EPOCH {epoch+1}:\n")
start_table()
model, epoch_loss, batch_losses_, eval_losses = train_epoch(model, optimizer, criterion, train_loader, val_loader, device, epoch+1, print_every)
epoch_losses.append(epoch_loss)
batch_losses.extend(batch_losses_)
eval_losses.extend(eval_losses)
print(f"EPOCH: {epoch+1} AVG LOSS: {epoch_loss}\n")
evaluate_complete(model, val_loader, device)
plt.figure()
plot_loss(batch_losses, "Training Loss", "Step", "Loss")
plt.figure()
plot_loss(epoch_losses, "Training Loss", "Epoch", "Loss")
return model, epoch_losses, batch_losses, eval_losses
parser = argparse.ArgumentParser()
parser.add_argument("--bert_path", type=str, default="bert-base-cased", help="Path to BERT model")
parser.add_argument("--epochs", type=int, default=10, help="Number of epochs to train")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size")
parser.add_argument("--freeze_bert", type=bool, default=False, help="Freeze BERT weights")
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
parser.add_argument("--save_path", type=str, default="models/BERT_CNN.pt", help="Path to save model")
parser.add_argument("--plot_dir", type=str, default="plots/train_sc", help="Directory to save the plots")
parser.add_argument("--log_every", type=int, default=10, help="Log every n batches")
parser.add_argument("--dataset", type=str, default="laptops", help="Dataset to train on")
parser.add_argument("--num_filters", type=int, default=64, help="Number of filters in the CNN")
parser.add_argument("--filter_size", type=int, default=10, help="Filter size of the CNN")
parser.add_argument("--seq_len", type=int, default=75, help="Sequence length")
args = parser.parse_args()
# PARAMS
bert_path = args.bert_path
num_filters = args.num_filters
filter_size = args.filter_size
num_classes = 4
freeze_bert = args.freeze_bert
if freeze_bert: print("[INFO] BERT has been frozen!\n")
batch_size = args.batch_size
shuffle = True
dataset = args.dataset
epochs = args.epochs
print_every = args.log_every
plot_dir = args.plot_dir + "_" + dataset
save_path = args.save_path.split(".pt")[0] + "_" + dataset + ".pt"
seq_len = args.seq_len
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
mapper_path = "models/sent2idx.json"
train_loader = load_data(f"data/train_{dataset}_sc.json", batch_size=batch_size, shuffle=shuffle, mapper_path=mapper_path)
val_loader = load_data(f"data/test_{dataset}_sc.json", batch_size=batch_size, shuffle=shuffle, mapper_path=mapper_path)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained(bert_path)
model = BERT_CNN(bert_path, num_classes, filter_size, num_filters, seq_len, freeze_bert).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = AdamW(model.parameters(), lr=args.lr)
model, epoch_losses, batch_losses, eval_losses = train(model,
optimizer, criterion, epochs, train_loader, val_loader, device, print_every)
torch.save(model, save_path)
"""
To train, use the following command:
python train_sc.py --bert_path bert-base-cased --epochs 15 --batch_size 16 --lr 5e-5 --save_path models/BERT_CNN.pt --plot_dir plots/train_sc --log_every 10 --dataset laptops --num_filters 64 --filter_size 10 --seq_len 75
"""