-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimutils.py
558 lines (475 loc) · 19 KB
/
imutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import os, sys
import numpy as np
import cv2
import argparse
from sklearn.preprocessing import LabelBinarizer, LabelEncoder
import matplotlib.pyplot as plt
from scipy.spatial import distance as dist
from threading import Thread
import time
from queue import Queue
sys.path.insert(1, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
image_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff")
def get_args(dataset=False, save_model=False, save_plot=False, save_json=False, save_weights=False, single_image=False, pretrained_model=False, use_video=False, **kwargs):
ap = argparse.ArgumentParser()
if dataset:
help_ = "path to input dataset"
if "dataset" in kwargs:
help_ = kwargs["dataset"]
ap.add_argument("-d", "--dataset", required=True, help=help_)
if save_model:
help_ = "path to output model"
if "model" in kwargs:
help_ = kwargs["model"]
ap.add_argument("-m", "--model", type=str, default="inception", help=help_)
elif pretrained_model:
help_ = "name of pretrained model to use"
if "model" in kwargs:
help_ = kwargs["model"]
ap.add_argument("-m", "--model", required=True, help=help_)
if save_plot:
help_ = "path to output plot"
if "plot" in kwargs:
help_ = kwargs["plot"]
ap.add_argument("-p", "--plot", required=True, help=help_)
if save_json:
help_ = "path to output json"
if "json" in kwargs:
help_ = kwargs["json"]
ap.add_argument("-j", "--json", required=True, help=help_)
if save_weights:
help_ = "path to weights directory"
if "weights" in kwargs:
help_ = kwargs["weights"]
ap.add_argument("-w", "--weights", required=True, help=help_)
if use_video:
help_ = "path to (optional) video file"
if "video" in kwargs:
help_ = kwargs["video"]
ap.add_argument("-v", "--video", help=help_)
if single_image:
help_ = "path to the input image"
if "image" in kwargs:
help_ = kwargs["image"]
ap.add_argument("-i", "--image", help=help_)
args = vars(ap.parse_args())
return args
def normalize(*args):
ans = []
for i in args:
ans.append(i.astype("float") / 255.0)
if len(args) == 1:
return ans[0]
return ans
def encodeY(*args, ohe=True):
if ohe:
encoder = LabelBinarizer()
else:
encoder = LabelEncoder()
ans = [encoder, encoder.fit_transform(args[0])]
for i in range(1, len(args)):
ans.append(encoder.transform(args[i]))
return ans
def addDimension(*args, after=True):
ans = []
if after:
for i in args:
ans.append(i[..., np.newaxis])
else:
for i in args:
ans.append(i[np.newaxis, ...])
if len(args) == 1:
return ans[0]
return ans
def indexOfFirstString(l):
for i in range(len(l)):
if type(l[i]) == str:
return i
return len(l)
def showImage(*imgs, together=False, **kwnames):
i = indexOfFirstString(imgs)
images = imgs[:i]
names = list(imgs[i:])
if not together:
if len(images) > len(names):
if len(kwnames) != 0:
names.extend(list(kwnames.values())[:len(images) - len(names)])
names.extend([f"Image{i}" for i in range(len(names) + 1, len(images) + 1)])
for i in range(len(images)):
cv2.imshow(names[i], images[i])
else:
if len(names) != 0:
name = names[0]
elif "name" in kwnames:
name = kwnames["name"]
elif len(kwnames) != 0:
name = list(kwnames.values())[0]
else:
name = "Image"
cv2.imshow(name, np.hstack(images))
cv2.waitKey(0)
cv2.destroyAllWindows()
def translate(im, x, y):
"""
Translates image by specified amount.
:param im: cv2 image object
:param x: horizontal translation (-ve sign -> left)
:param y: vertical translation (-ve sign -> up)
:return: shifted cv2 image object
"""
M = np.float32([[1, 0, x], [0, 1, y]])
return cv2.warpAffine(im, M, (im.shape[1], im.shape[0]))
def rotate(im, angle, center=None, scale=1.0):
"""
Rotates image by specified angle.
:param im: cv2 image object
:param angle: angle to rotate by
:param center: point around which to rotate (default - center of image)
:param scale: scale of the resultant image (default - same scale)
:return: rotated image
"""
h, w = im.shape[:2]
if not center:
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, scale)
return cv2.warpAffine(im, M, (w, h))
def resize(img, width=None, height=None, inter=cv2.INTER_AREA, fx=1, fy=1, padSame=False):
"""
Returns the resized image.
:param img: cv2 image object
:param width: The fixed width of the result
:param height: The fixed height of the result
:param inter: Interpolation Method
:param fx: Ratio to scale width
:param fy: Ratio to scale height
:param padSame: If border is same or 0.
:return: cv2 Image
"""
h, w = img.shape[:2]
if not width and not height:
wn = int(w * fx)
hn = int(h * fy)
dim = (wn, hn)
elif not width:
r = height / float(h)
dim = (int(w * r), height)
elif not height:
r = width / float(w)
dim = (width, int(h * r))
else:
dW = 0; dH = 0
if w < h:
img = resize(img, width=width)
dH = int((img.shape[0]-height)/2.0)
else:
img = resize(img, height=height)
dW = int((img.shape[1] - width) / 2.0)
h, w = img.shape[:2]
img = img[dH:h-dH, dW:w-dW]
dim = (width, height)
return cv2.resize(img, dim, interpolation=inter)
def sort_contours(contours, method="left-to-right"):
reverse = False
i = 0
possibilities = ["left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"]
assert method in possibilities
if method == "right-to-left" or method == "bottom-to-top":
reverse = True
if method == possibilities[2] or method == possibilities[3]:
i = 1
boundingBoxes = [cv2.boundingRect(c) for c in contours]
cnts, boundingBoxes = zip(*sorted(zip(contours, boundingBoxes), key=lambda x: (x[1][i], x[1][1]), reverse=reverse))
return cnts, boundingBoxes
def list_images(basePath, contains=None):
# return the set of files that are valid
return list_files(basePath, validExts=image_types, contains=contains)
def list_files(basePath, validExts=None, contains=None):
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue
# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()
# check to see if the file is an image and should be processed
if validExts is None or ext.endswith(validExts):
# construct the path to the image and yield it
imagePath = os.path.join(rootDir, filename)
yield imagePath
def plot_model(history, epochs, validation=True, accuracy=True, loss=True, title="Training Analytics"):
plt.style.use("ggplot")
plt.figure()
if loss:
plt.plot(np.arange(0, epochs), history.history["loss"], label="train_loss")
if validation:
plt.plot(np.arange(0, epochs), history.history["val_loss"], label="validation_loss")
if accuracy:
plt.plot(np.arange(0, epochs), history.history["accuracy"], label="accuracy")
if validation:
plt.plot(np.arange(0, epochs), history.history["val_accuracy"], label="validation_accuracy")
plt.title(title)
plt.xlabel("Epoch #")
plt.ylabel("Metric Values")
plt.legend()
return plt
def deskew_digit(img, applyThreshold=True):
if applyThreshold:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
img = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
(h, w) = img.shape[:2]
moments = cv2.moments(img)
if abs(moments['mu02']) < 1e-2:
return img
skew = moments["mu11"] / moments["mu02"]
M = np.float32([
[1, skew, -0.5 * w * skew],
[0, 1, 0]])
img = cv2.warpAffine(img, M, (w, h), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
return img
def deskew_text(img, applyThreshold=True):
if applyThreshold:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
else:
thresh = img
cords = np.column_stack(np.where(thresh > 0))
angle = cv2.minAreaRect(cords)[-1]
if angle < -45:
angle = -(90 + angle)
else:
angle = -angle
(h, w) = img.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated = cv2.warpAffine(img, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
return rotated
def pointInside(r1, r2, leverage):
"""
Checks whether the rectangle r2 is inside r1.
:param r1: tuple of the form (x,y,w,h)
:param r2: tuple of the form (x,y,w,h)
:return: True if inside else False
"""
x1, y1, w1, h1 = r1
x2, y2, w2, h2 = r2
if x1 - leverage <= x2 <= x1 + w1 + leverage and y1 - leverage <= y2 <= y1 + h1 + leverage:
return True
elif x1 - leverage <= x2 + w2 <= x1 + w1 + leverage and y1 - leverage <= y2 + h2 <= y1 + h1 + leverage:
return True
elif x1 - leverage <= x2 <= x1 + w1 + leverage and y1 - leverage <= y2 + h2 <= y1 + h1 + leverage:
return True
elif x1 - leverage <= x2 + w2 <= x1 + w1 + leverage and y1 - leverage <= y2 <= y1 + h1 + leverage:
return True
return False
def mergeRects(r1, r2):
"""
merge 2 rectangles r1 and r2 where r1 has lower x co-ordinate.
:param r1: first rectangle
:param r2: second rectangle
:return: merged rectangle
"""
x1, y1, w1, h1 = r1
x2, y2, w2, h2 = r2
x3 = min(x1, x2)
y3 = min(y1, y2)
w3 = max(x1 + w1, x2 + w2) - x3
h3 = max(y1 + h1, y2 + h2) - y3
return x3, y3, w3, h3
def getExternalContours(img=None, cnts=None, leverage=3, applySort=False, minArea=None, display=False, original=False):
col = (0, 255, 0)
if img is not None and cnts is None:
col = 255
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts, boundingBoxes = sort_contours(cnts)
else:
if not cnts:
raise AssertionError("Please provide either the image or the contours.")
if applySort:
cnts, boundingBoxes = sort_contours(cnts)
else:
boundingBoxes = [cv2.boundingRect(cnt) for cnt in cnts]
# Assuming the contours are sorted left to right and top ro bottom so the parent contour comes before its children.
if original:
return cnts, boundingBoxes
contours = [cnts[0]]
boundingBoxes1 = [boundingBoxes[0]]
for i in range(1, len(boundingBoxes)):
x, y, w, h = boundingBoxes[i]
if minArea and w * h < minArea:
continue
if not pointInside(boundingBoxes1[-1], boundingBoxes[i], leverage):
contours.append(cnts[i])
boundingBoxes1.append(boundingBoxes[i])
else:
boundingBoxes1[-1] = mergeRects(boundingBoxes1[-1], boundingBoxes[i])
if display:
if img is None:
print("No image given to display.")
else:
displayBoundingBoxes(img, boundingBoxes1, col)
displayBoundingBoxes(img, boundingBoxes, col)
return contours, boundingBoxes1
def displayBoundingBoxes(img, boundingBoxes, col=(0, 255, 0)):
img1 = img.copy()
for b in boundingBoxes:
x, y, w, h = b
cv2.rectangle(img1, (x, y), (x + w, y + h), col, 1)
showImage(img1)
def centralize_digit(img, size):
(eW, eH) = size
if img.shape[1] > img.shape[0]:
image = resize(img, width=eW, inter=cv2.INTER_AREA)
else:
image = resize(img, height=eH, inter=cv2.INTER_AREA)
extent = np.zeros((eH, eW), dtype="uint8")
offsetX = (eW - image.shape[1]) // 2
offsetY = (eH - image.shape[0]) // 2
extent[offsetY:offsetY + image.shape[0], offsetX:offsetX + image.shape[1]] = image
M = cv2.moments(extent)
try:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
(dX, dY) = ((size[0] // 2) - cX, (size[1] // 2) - cY)
M = np.float32([[1, 0, dX], [0, 1, dY]])
extent = cv2.warpAffine(extent, M, size)
return extent
except ZeroDivisionError:
return resize(img, width=size[0], height=size[1])
def deskew_digits(imgs, applyThreshold=False):
return np.array([deskew_digit(img, applyThreshold) for img in imgs])
def centralize_digits(imgs, size):
return np.array([centralize_digit(img, size) for img in imgs])
def order_points(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-co-ordinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now that we have the top-left coordinate, use it as an
# anchor to calculate the Euclidean distance between the
# top-left and right-most points; by the Pythagorean
# theorem, the point with the largest distance will be
# our bottom-right point
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
(br, tr) = rightMost[np.argsort(D)[::-1], :]
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="float32")
def four_point_transform(image, pts):
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x co-ordinates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
def straightenAndCenter(img, size, applyThreshold=False):
img = deskew_digit(img, applyThreshold)
img = centralize_digit(img, size)
return img
class FileVideoStream:
def __init__(self, path, transform=None, queue_size=128):
# initialize the file video stream along with the boolean
# used to indicate if the thread should be stopped or not
self.stream = cv2.VideoCapture(path)
self.stopped = False
self.transform = transform
# initialize the queue used to store frames read from
# the video file
self.Q = Queue(maxsize=queue_size)
# initialize thread
self.thread = Thread(target=self.update, args=())
self.thread.daemon = True
def start(self):
# start a thread to read frames from the file video stream
self.thread.start()
return self
def update(self):
# keep looping infinitely
while True:
# if the thread indicator variable is set, stop the
# thread
if self.stopped:
break
# otherwise, ensure the queue has room in it
if not self.Q.full():
# read the next frame from the file
(grabbed, frame) = self.stream.read()
# if the `grabbed` boolean is `False`, then we have
# reached the end of the video file
if not grabbed:
self.stopped = True
# if there are transforms to be done, might as well
# do them on producer thread before handing back to
# consumer thread. ie. Usually the producer is so far
# ahead of consumer that we have time to spare.
#
# Python is not parallel but the transform operations
# are usually OpenCV native so release the GIL.
#
# Really just trying to avoid spinning up additional
# native threads and overheads of additional
# producer/consumer queues since this one was generally
# idle grabbing frames.
if self.transform:
frame = self.transform(frame)
# add the frame to the queue
self.Q.put(frame)
else:
time.sleep(0.1) # Rest for 10ms, we have a full queue
self.stream.release()
def read(self):
# return next frame in the queue
return self.Q.get()
# Insufficient to have consumer use while(more()) which does
# not take into account if the producer has reached end of
# file stream.
def running(self):
return self.more() or not self.stopped
def more(self):
# return True if there are still frames in the queue. If stream is not stopped, try to wait a moment
tries = 0
while self.Q.qsize() == 0 and not self.stopped and tries < 5:
time.sleep(0.1)
tries += 1
return self.Q.qsize() > 0
def stop(self):
# indicate that the thread should be stopped
self.stopped = True
# wait until stream resources are released (producer thread might be still grabbing frame)
self.thread.join()