-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmake_dataset.py
102 lines (89 loc) · 4.27 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import numpy
import codecs
import h5py
import yaml
import argparse
import os
from fuel.datasets import H5PYDataset
from config import config
from morfessor.io import MorfessorIO
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-mf", required=True, help="The morfessor model to use",
dest="morf_model")
parser.add_argument("input", nargs=1, help="Input text file")
options = parser.parse_args()
# Load config parameters
locals().update(config)
numpy.random.seed(0)
# Read in the morfessor model
morf_segmenter = MorfessorIO().read_binary_model_file(options.morf_model)
with codecs.open(options.input[0], 'r', 'utf-8') as f:
data = f.read().split()
if len(data) % seq_length > 0:
data = data[:len(data) - len(data) % seq_length + 1]
else:
data = data[:len(data) - seq_length + 1]
nsamples = len(data) // seq_length
# Read in word-level data
words = set(data)
vocab_size = len(words)
word_to_ix = {word: i for i, word in enumerate(words)}
ix_to_word = {i: word for i, word in enumerate(words)}
# Read in morpho-level data
morphos = set([])
cache = {}
max_morpheme_num = 0
for word in data:
if word in cache:
morpheme_decomp = cache[word]
else:
morpheme_decomp = morf_segmenter.viterbi_segment(word)[0]
cache[word] = morpheme_decomp
if len(morpheme_decomp) > max_morpheme_num:
max_morpheme_num = len(morpheme_decomp)
for m in morpheme_decomp:
morphos.add(m)
print "Word with most morphemes has", max_morpheme_num, "morphemes"
morpho_vocab_size = len(morphos)
morpho_to_ix = {morpho: i for i, morpho in enumerate(morphos)}
ix_to_morpho = {i: morpho for i, morpho in enumerate(morphos)}
word_inputs = numpy.empty((nsamples, seq_length), dtype='uint32')
morpho_inputs = numpy.empty((nsamples, seq_length, max_morpheme_num), dtype='uint32')
morpho_masks_inputs = numpy.zeros_like(morpho_inputs)
word_outputs = numpy.zeros_like(word_inputs)
for i, p in enumerate(range(0, len(data) - 1, seq_length)):
word_inputs[i] = numpy.array([word_to_ix[word] for word in data[p:p + seq_length]])
morpho_inputs[i] = numpy.array([ [morpho_to_ix[m] for m in cache[word]] + [0] * (max_morpheme_num - len(cache[word])) for word in data[p:p + seq_length]])
morpho_masks_inputs[i] = numpy.array([ [1] * len(cache[word]) + [0] * (max_morpheme_num - len(cache[word])) for word in data[p:p + seq_length]])
word_outputs[i] = numpy.array([word_to_ix[word] for word in data[p + 1:p + seq_length + 1]])
f = h5py.File(os.path.splitext(options.input[0])[0] + ".hdf5", mode='w')
word_features = f.create_dataset('word_features', word_inputs.shape, dtype='uint32')
morpho_features = f.create_dataset('morpho_features', morpho_inputs.shape, dtype='uint32')
morpho_masks = f.create_dataset('morpho_masks', morpho_masks_inputs.shape, dtype='uint8')
word_targets = f.create_dataset('word_targets', word_outputs.shape, dtype='uint32')
word_targets.attrs['word_to_ix'] = yaml.dump(word_to_ix)
word_targets.attrs['ix_to_word'] = yaml.dump(ix_to_word)
word_targets.attrs['morpho_to_ix'] = yaml.dump(morpho_to_ix)
word_targets.attrs['ix_to_morpho'] = yaml.dump(ix_to_morpho)
word_features[...] = word_inputs
morpho_features[...] = morpho_inputs
morpho_masks[...] = morpho_masks_inputs
word_targets[...] = word_outputs
word_features.dims[0].label = 'batch'
word_features.dims[1].label = 'sequence'
word_targets.dims[0].label = 'batch'
word_targets.dims[1].label = 'sequence'
nsamples_train = int(nsamples * train_size)
split_dict = {
'train': {'word_features': (0, nsamples_train),
'word_targets': (0, nsamples_train),
'morpho_features': (0, nsamples_train),
'morpho_masks': (0, nsamples_train)},
'dev': {'word_features': (nsamples_train, nsamples),
'word_targets': (nsamples_train, nsamples),
'morpho_features': (nsamples_train, nsamples),
'morpho_masks': (nsamples_train, nsamples)}}
f.attrs['split'] = H5PYDataset.create_split_array(split_dict)
f.flush()
f.close()