Skip to content

Latest commit

 

History

History
171 lines (130 loc) · 3.48 KB

README.md

File metadata and controls

171 lines (130 loc) · 3.48 KB
title author date output geometry
LU Factorization Algorithm
ShenHengheng
October 27, 2017
pdf_document
left=2.5cm,right=2cm,top=2.5cm,bottom=2cm

Brief Introduction

The algorithm is written by R language, and implement lu algorithms.

Source Code

Structure

  • findpiv() function
  • switch2rows() function
  • plu() function

Code

  • findpiv <- function(A, k, p, tol)

    • Description: findpiv Used by plu to find a pivot for Gaussian elimination.

    • Arguments: - A full Matrix, and such that k and p - k,p specified submatrix begin ar k-th and p-th - tol machine number

    • Returns list(r,p) represent row and column of the first element

    • Usage [r, p] = findpiv(A(k:m, p:n), k, p, tol) finds the first element in the specified submatrix which is larger than tol in absolute value. It returns a list of indices r and p so that A(r, p) is the pivot.

this is source of findpiv function

findpiv <- function(A, k, p, tol) {
  shape <- dim(A) # shape of A matrix, and return a vector, and contains two elements
  m <- shape[1]
  n <- shape[2]
  r <- which(abs(A) > tol)
  if (length(r) == 0)
    return(list(k=k, p=p))
  
  #
  r <- r[1]
  j <- as.integer(as.double(r-1)/m )+ 1
  p <- p + j - 1
  
  k <- k + r - (j - 1) * m - 1
  return(list(k=k, p=p))
}
  • switch2rows <- function(A, m, n, i, j)

    • Description: switch two rows and spcified from i to j column.

    • Arguments: - A full Matrix, - m,n rows that changed - i,j columns specified

    • Returns new A changed

    • Usage switch2rows <- function(A, m, n, i, j) change two rows in the specified submatrix It returns new matrix A.

switch2rows <- function(A, m, n, i, j) {
  B <- A
  B[m, i:j] <- A[n, i:j]
  B[n, i:j] <- A[m, i:j]
  return(B)
}
  • switch2rows <- function(A, m, n, i, j)

    • Description: plu Rectangular PA=LU factorization with row exchanges.

    • Arguments: - A a rectangular Matrix,

    • Returns list(P, L, U) - P a permutation matrix - L a lower trinagular matrix - U an upper triangular matrix, size same as raw matrix

plu <- function(A) {
  shape <- dim(A)
  m <- shape[1]
  n <- shape[2]
  P <- as.matrix(diag(m))
  L <- as.matrix(diag(m))
  U <- matrix(0, m, n)
  pivcol <- c()
  tol <- sqrt(.Machine$double.eps)
  sign <- 1
  p <- 1
  for (k in 1:min(m, n)) {
    xy = findpiv(A[k:m, p:n], k, p, tol)
    r <- xy[[1]]
    p <- xy[[2]]
    if(length(r)==0)return(list(P=P,L=L,U=U))
    if (r!= k) {
      A <- switch2rows(A, k, r, 1, n)
      print(dim(A))
      if (k > 1) 
        L <- switch2rows(L, k, r, 1, k-1)

      P <- switch2rows(P, k, r, 1, m)
      sign <- -sign
    }
    if (abs(A[k, p]) >= tol) {
      pivcol[length(pivcol) + 1] <- p
      for (i in (k+1):m) {
        L[i, k] <- A[i, p] / A[k, p]
        for (j in (k +1):n) {
          A[i, j] <- A[i, j] - L[i, k]*A[k, j]
        }
      }
    }
    for (j in k:n) {
      U[k, j] <- A[k, j] * (abs(A[k, j]) >= tol)
    }
    if (p < n)
      p <- p + 1
  
  }
  # 
  return(list(P=P,L=L,U=U))
}

example

Quickly generate matrix 3x3, and column first, e.g.

A <- matrix(data = 1:9, 3, 3)
A

And apply plu function and return P,L,U

findpiv(A, 1, 1, .Machine$double.eps)
plu(A)

another LU factorization example of rectangular 2x3 matrix

A <- matrix(data = 0:5, 2, 3)
A
plu(A)