8
8
x = np .array (range (10 ))
9
9
10
10
11
- def image_function (instance : af .ModelInstance , simulate_path :Optional [str ]):
11
+ def simulate_function (instance : af .ModelInstance , simulate_path :Optional [str ]):
12
12
image = instance .gaussian (x )
13
13
if hasattr (instance , "perturbation" ):
14
14
image += instance .perturbation (x )
@@ -21,7 +21,7 @@ def __init__(self, image: np.array):
21
21
self .image = image
22
22
23
23
def log_likelihood_function (self , instance ):
24
- image = image_function (instance , simulate_path = None )
24
+ image = simulate_function (instance , simulate_path = None )
25
25
return np .mean (np .multiply (- 0.5 , np .square (np .subtract (self .image , image ))))
26
26
27
27
@@ -55,7 +55,7 @@ def make_sensitivity(
55
55
gaussian = af .Model (af .Gaussian )
56
56
),
57
57
perturbation_model = perturbation_model ,
58
- simulate_function = image_function ,
58
+ simulate_function = simulate_function ,
59
59
analysis_class = Analysis ,
60
60
search = search ,
61
61
number_of_steps = 2 ,
@@ -81,7 +81,7 @@ def make_job(
81
81
instance .gaussian = af .Gaussian ()
82
82
base_instance = instance
83
83
instance .perturbation = af .Gaussian ()
84
- image = image_function (instance , "" )
84
+ image = simulate_function (instance , "" )
85
85
# noinspection PyTypeChecker
86
86
return s .Job (
87
87
model = af .Collection (
0 commit comments