@@ -105,7 +105,7 @@ def _fit(self, model: AbstractPriorModel, analysis):
105
105
analysis = analysis ,
106
106
paths = self .paths ,
107
107
fom_is_log_likelihood = False ,
108
- resample_figure_of_merit = - np .inf
108
+ resample_figure_of_merit = - np .inf ,
109
109
)
110
110
111
111
pool = self .make_sneaky_pool (fitness )
@@ -147,6 +147,8 @@ def _fit(self, model: AbstractPriorModel, analysis):
147
147
total_points = search_internal .nwalkers ,
148
148
model = model ,
149
149
fitness = fitness ,
150
+ paths = self .paths ,
151
+ n_cores = self .number_of_cores ,
150
152
)
151
153
152
154
state = np .zeros (shape = (search_internal .nwalkers , model .prior_count ))
@@ -184,17 +186,19 @@ def _fit(self, model: AbstractPriorModel, analysis):
184
186
samples = self .samples_from (model = model , search_internal = search_internal )
185
187
186
188
if self .auto_correlation_settings .check_for_convergence :
187
- if search_internal .iteration > self .auto_correlation_settings .check_size :
189
+ if (
190
+ search_internal .iteration
191
+ > self .auto_correlation_settings .check_size
192
+ ):
188
193
if samples .converged :
189
194
iterations_remaining = 0
190
195
191
196
if iterations_remaining > 0 :
192
-
193
197
self .perform_update (
194
198
model = model ,
195
199
analysis = analysis ,
196
200
search_internal = search_internal ,
197
- during_analysis = True
201
+ during_analysis = True ,
198
202
)
199
203
200
204
return search_internal
@@ -214,7 +218,6 @@ def output_search_internal(self, search_internal):
214
218
pass
215
219
216
220
def samples_info_from (self , search_internal = None ):
217
-
218
221
search_internal = search_internal or self .backend
219
222
220
223
auto_correlations = self .auto_correlations_from (search_internal = search_internal )
@@ -225,7 +228,7 @@ def samples_info_from(self, search_internal=None):
225
228
"change_threshold" : auto_correlations .change_threshold ,
226
229
"total_walkers" : len (search_internal .get_chain ()[0 , :, 0 ]),
227
230
"total_steps" : len (search_internal .get_log_prob ()),
228
- "time" : self .timer .time if self .timer else None
231
+ "time" : self .timer .time if self .timer else None ,
229
232
}
230
233
231
234
def samples_via_internal_from (self , model , search_internal = None ):
@@ -247,14 +250,14 @@ def samples_via_internal_from(self, model, search_internal=None):
247
250
search_internal = search_internal or self .backend
248
251
249
252
if os .environ .get ("PYAUTOFIT_TEST_MODE" ) == "1" :
250
-
251
253
samples_after_burn_in = search_internal .get_chain (
252
- discard = 5 , thin = 5 , flat = True
253
- )
254
+ discard = 5 , thin = 5 , flat = True
255
+ )
254
256
255
257
else :
256
-
257
- auto_correlations = self .auto_correlations_from (search_internal = search_internal )
258
+ auto_correlations = self .auto_correlations_from (
259
+ search_internal = search_internal
260
+ )
258
261
259
262
discard = int (3.0 * np .max (auto_correlations .times ))
260
263
thin = int (np .max (auto_correlations .times ) / 2.0 )
@@ -292,11 +295,12 @@ def samples_via_internal_from(self, model, search_internal=None):
292
295
sample_list = sample_list ,
293
296
samples_info = self .samples_info_from (search_internal = search_internal ),
294
297
auto_correlation_settings = self .auto_correlation_settings ,
295
- auto_correlations = self .auto_correlations_from (search_internal = search_internal ),
298
+ auto_correlations = self .auto_correlations_from (
299
+ search_internal = search_internal
300
+ ),
296
301
)
297
302
298
303
def auto_correlations_from (self , search_internal = None ):
299
-
300
304
search_internal = search_internal or self .backend
301
305
302
306
times = search_internal .get_autocorr_time (tol = 0 )
0 commit comments