forked from HemaxiN/DL_ECG_Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
209 lines (184 loc) · 8.39 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#Code based on the source code of homework 1 and homework 2 of the
#deep structured learning code https://fenix.tecnico.ulisboa.pt/disciplinas/AEProf/2021-2022/1-semestre/homeworks
#import packages
import argparse
import torch
from torch import nn
from torch.utils.data import DataLoader
from utils import configure_seed, configure_device, plot, ECGImageDataset, compute_scores_dev, compute_scores
#auxiliary functions to evaluate the performance of the model
from sklearn.metrics import recall_score
import statistics
import numpy as np
import os
#simple CNN for classification
class simplecnn(nn.Module):
def __init__(self, n_classes, **kwargs):
"""
Define the layers of the model
Args:
n_classes (int): Number of classes in our classification problem
"""
super(simplecnn, self).__init__()
nb_filters = 16
self.n_classes = n_classes
self.conv2d_1 = nn.Conv2d(9,nb_filters,3) #9 input channels
#nn.Conv2d(in_channels, out_channels, kernel_size)
self.conv2d_2 = nn.Conv2d(nb_filters, nb_filters*2, 3, padding=1)
self.conv2d_3 = nn.Conv2d(nb_filters*2, nb_filters*4, 3, padding=1)
self.linear_1 = nn.Linear(246016, 2048)
self.linear_2 = nn.Linear(2048, 1024)
self.linear_3 = nn.Linear(1024, n_classes)
#nn.MaxPool2d(kernel_size)
self.maxpool2d = nn.MaxPool2d(4, stride=2)
self.relu = nn.ReLU()
self.dropout = nn.Dropout2d(0.3)
def forward(self, X, **kwargs):
"""
Forward Propagation
Args:
X: batch of training examples with dimension (batch_size, 9, 1000, 1000)
"""
x1 = self.relu(self.conv2d_1(X))
maxpool1 = self.maxpool2d(x1)
x2 = self.relu(self.conv2d_2(maxpool1))
x3 = self.relu(self.conv2d_3(x2))
maxpool2 = self.maxpool2d(x3)
maxpool2 = self.dropout(maxpool2)
maxpool2 = maxpool2.reshape(maxpool2.shape[0],-1) #flatten (batch_size,)
x4 = self.dropout(self.relu(self.linear_1(maxpool2)))
x5 = self.relu(self.linear_2(x4))
x6 = self.linear_3(x5)
return x6
def train_batch(X, y, model, optimizer, criterion, gpu_id=None, **kwargs):
"""
X (batch_size, 9, 1000, 1000): batch of examples
y (batch_size, 4): ground truth labels
model: Pytorch model
optimizer: optimizer for the gradient step
criterion: loss function
"""
X, y = X.to(gpu_id), y.to(gpu_id)
optimizer.zero_grad()
out = model(X, **kwargs)
loss = criterion(out, y)
loss.backward()
optimizer.step()
return loss.item()
def predict(model, X):
"""
Make label predictions for "X" (batch_size, 9, 1000, 1000)
given the trained model "model"
"""
logits_ = model(X) # (batch_size, n_classes
probabilities = torch.sigmoid(logits_).cpu()
pred_labels = np.array(probabilities>0.5, dtype=float) # (batch_size, n_classes)
return pred_labels
def evaluate(model,dataloader, part, gpu_id=None):
"""
model: Pytorch model
X (batch_size, 9, 1000, 1000) : batch of examples
y (batch_size,4): ground truth labels
"""
model.eval()
with torch.no_grad():
matrix = np.zeros((4,4))
for i, (x_batch, y_batch) in enumerate(dataloader):
print('eval {} of {}'.format(i + 1, len(dataloader)), end='\r')
x_batch, y_batch = x_batch.to(gpu_id), y_batch.to(gpu_id)
y_pred = predict(model, x_batch)
y_true = np.array(y_batch.cpu())
matrix = compute_scores(y_true,y_pred, matrix)
#delete unnecessary variables due to memory issues
del x_batch
del y_batch
torch.cuda.empty_cache()
model.train()
if part == 'dev':
return compute_scores_dev(matrix)
if part == 'test':
return matrix
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-data', default=None,
help="Path to the dataset.")
parser.add_argument('-epochs', default=100, type=int,
help="""Number of epochs to train the model.""")
parser.add_argument('-batch_size', default=4, type=int,
help="Size of training batch.")
parser.add_argument('-learning_rate', type=float, default=0.01)
parser.add_argument('-l2_decay', type=float, default=0)
parser.add_argument('-optimizer',
choices=['sgd', 'adam'], default='sgd')
parser.add_argument('-gpu_id', type=int, default=None)
parser.add_argument('-path_save_model', default=None,
help='Path to save the model')
opt = parser.parse_args()
configure_seed(seed=42)
configure_device(opt.gpu_id)
_examples_ = [17111,2156,2163]
print("Loading data...") ## input manual nexamples train, dev e test
train_dataset = ECGImageDataset(opt.data, _examples_, 'train')
dev_dataset = ECGImageDataset(opt.data, _examples_, 'dev')
test_dataset = ECGImageDataset(opt.data, _examples_, 'test')
train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True)
dev_dataloader = DataLoader(dev_dataset, batch_size=opt.batch_size, shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False)
n_classes = 4 # 4 diseases + normal
# initialize the model
model = AlexNet(n_classes)
model = model.to(opt.gpu_id)
# get an optimizer
optims = {
"adam": torch.optim.Adam,
"sgd": torch.optim.SGD}
optim_cls = optims[opt.optimizer]
optimizer = optim_cls(
model.parameters(),
lr=opt.learning_rate,
weight_decay=opt.l2_decay)
# get a loss criterion and compute the class weights (nbnegative/nbpositive)
# according to the comments https://discuss.pytorch.org/t/weighted-binary-cross-entropy/51156/6
# and https://discuss.pytorch.org/t/multi-label-multi-class-class-imbalance/37573/2
class_weights=torch.tensor([17111/4389, 17111/3136, 17111/1915, 17111/417],dtype=torch.float)
class_weights = class_weights.to(opt.gpu_id)
criterion = nn.BCEWithLogitsLoss(pos_weight=class_weights) #https://learnopencv.com/multi-label-image-classification-with-pytorch-image-tagging/
# https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
# training loop
epochs = torch.arange(1, opt.epochs + 1)
train_mean_losses = []
valid_specificity = []
valid_sensitivity = []
train_losses = []
for ii in epochs:
print('Training epoch {}'.format(ii))
for i, (X_batch, y_batch) in enumerate(train_dataloader):
#print('{} of {}'.format(i + 1, len(train_dataloader)), end='\r', flush=True)
print(i, flush=True)
loss = train_batch(
X_batch, y_batch, model, optimizer, criterion, gpu_id=opt.gpu_id)
#input()
del X_batch
del y_batch
torch.cuda.empty_cache()
#input()
train_losses.append(loss)
print(loss, flush=True)
mean_loss = torch.tensor(train_losses).mean().item()
print('Training loss: %.4f' % (mean_loss))
train_mean_losses.append(mean_loss)
sensitivity, specificity = evaluate(model, dev_dataloader, 'dev', gpu_id=opt.gpu_id)
valid_sensitivity.append(sensitivity)
valid_specificity.append(specificity)
print('Valid specificity: %.4f' % (valid_specificity[-1]))
print('Valid sensitivity: %.4f' % (valid_sensitivity[-1]))
#https://pytorch.org/tutorials/beginner/saving_loading_models.html (save the model at the end of each epoch)
torch.save(model.state_dict(), os.path.join(opt.path_save_model, 'model'+ str(ii.item())))
print('Final Test Results:')
print(evaluate(model, test_dataloader, 'test', gpu_id=opt.gpu_id))
# plot
plot(epochs, train_mean_losses, ylabel='Loss', name='training-loss-{}-{}'.format(opt.learning_rate, opt.optimizer))
plot(epochs, valid_specificity, ylabel='Specificity', name='validation-specificity-{}-{}'.format(opt.learning_rate, opt.optimizer))
plot(epochs, valid_sensitivity, ylabel='Sensitivity', name='validation-sensitivity-{}-{}'.format(opt.learning_rate, opt.optimizer))
if __name__ == '__main__':
main()