forked from dwavesystems/dimod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqm.py
66 lines (46 loc) · 1.97 KB
/
qm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2021 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dimod
import itertools
class TimeAddLinearFrom:
params = ([str, int], [dict, list])
def setUp(self, type_, container):
self.qm = qm = dimod.QuadraticModel()
qm.add_variables_from('BINARY', map(type_, range(5000)))
self.iterator = container((type_(v), 1) for v in range(5000))
def time_add_linear_from(self, *args):
self.qm.add_linear_from(self.iterator)
class TimeAddVariablesFrom:
params = [str, int]
def setUp(self, type_):
self.qm = dimod.QuadraticModel()
self.variables = list(map(type_, range(5000)))
def time_add_variables_from(self, *args):
self.qm.add_variables_from('BINARY', self.variables)
class TimeFromFile:
dense = dimod.QM()
dense.add_variables_from('BINARY', range(2500))
dense.add_quadratic_from((u, v, 1) for u, v in itertools.combinations(dense.variables, 2))
dense_fp = dense.to_file()
# ideally this would be more determistic than just specifying the seed, but
# this is a lot easier.
sparse = dimod.QM.from_bqm(dimod.generators.gnm_random_bqm(5000, 5000, 'SPIN', random_state=42))
sparse_fp = sparse.to_file()
def setup(self):
self.dense_fp.seek(0)
self.sparse_fp.seek(0)
def time_from_file_dense(self):
dimod.QM.from_file(self.dense_fp)
def time_from_file_sparse(self):
dimod.QM.from_file(self.sparse_fp)