-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCelebDataset.py
99 lines (76 loc) · 2.78 KB
/
CelebDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import cv2
from random import randint
import numpy as np
import os
import torch
from torchvision import transforms
from torch.utils.data import Dataset
# was 256, this is after cropping. Used to be 227x227 with crop, but 224 (even) makes the math easier
DATA_W = 225
DATA_H = 225
DATA_C = 3
class Rescale(object):
def __init__(self, output_size):
self.output_size = output_size
def __call__(self, s):
# default interpolation=cv2.INTER_LINEAR (rec., fast and ok quality)
return cv2.resize(s, self.output_size)
class RandomCrop(object):
def __init__(self, output_size):
self.output_size = output_size
def __call__(self, s):
h, w = s.shape[:2]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
crop_im = s[top : top + new_h, left : left + new_w]
return crop_im
class RandHorizontalFlip(object):
def __call__(self, s):
if randint(0,1):
return np.flip(s, 1).copy()
else:
return s
class ToTensor(object):
def __call__(self, s):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
# You can do the reshape((W,H,C)) to get the original (numpy format) back
return torch.from_numpy(s.transpose((2,0,1))).float()
class Normalize(object):
def __call__(self, s):
return s / 255
class Normalize01(object):
"""Normalize between 0-1"""
def __call__(self, s):
return (s + 1)/2
class NormalizeMean(object):
def __call__(self, s):
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
return normalize(s)
class CelebDataset(Dataset):
def __init__(self, train=True, transform=None, datadir="../Datasets/CelebA_Align/"):
self.datadir = datadir
self.train = train
self.transform = transforms.Compose(transform)
total_s = 202598 # one less than there actually is but eveness
train_range = int(0.8 * total_s) - 1 # 80% n of ims
self.train_range = train_range
self.nsamples = train_range if train else total_s - train_range
def __len__(self):
return self.nsamples
def __getitem__(self, index):
imfmt = "%06d.jpg"
start = 1 if self.train else self.train_range
im_name = self.datadir + imfmt % (start+index)
im = cv2.cvtColor(cv2.imread(im_name), cv2.COLOR_BGR2RGB)
return self.transform(im)
if __name__ == "__main__":
transform = [Rescale((232, 232)), RandomCrop((DATA_W, DATA_H))]
dataset = CelebDataset(train=False, transform=transform)
cv2.imshow("hey", dataset[0])
cv2.waitKey(0)
cv2.imshow("hey", dataset[1])
cv2.waitKey(0)