-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHybridEqualDataset.py
137 lines (119 loc) · 5.71 KB
/
HybridEqualDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import os
import torch
from torchvision import transforms
from torch.utils.data import Dataset
import SOSDataset
import SynDataset
import cv2
from random import sample, shuffle
import itertools
class HybridEqualDataset(Dataset):
# maybe have two different transforms for the datasets
# Consider the dynamic between test and train (syn are totally random, and pseuod generated)
# as syn examples are pseudo generated, consider importing way more
def __init__(self, epochs, transform=None, grow_f=0.38, t=0.0, datadir="../Datasets/", sorted_loc="/tmp",
syn_samples=None, real_samples=None, train=True,):
"""
grow_f is a factor [0,1] by how much we should grow the datasize with synthetic examples
"""
self.train = train
self.classes = 5
self.sos = SOSDataset.SOSDataset(train=train, extended=True, transform=transform, datadir=datadir, sorted_loc=sorted_loc)
# load the sorted list from a file for speed
self.sos_sort = self.sos.load_sorted_classes()
self.sos_n = [len(s) for s in self.sos_sort]
r_samples = len(self.sos)
s_samples = round(grow_f * r_samples)
self.nsamples = r_samples + s_samples
# make nsamples a multiple of the amount of classes
# number of examples per class for perfect balance
self.class_n = round(self.nsamples / self.classes)
self.nsamples += self.classes - (self.nsamples % self.classes)
# Specify absolute amounts
if not syn_samples is None:
t = 1.1
self.syn_samples = syn_samples
if not real_samples is None:
t = 1.1
self.real_samples = real_samples
self.syn = SynDataset.SynDataset(train=True, transform=transform, split=1, datadir=datadir, sorted_loc=sorted_loc)
# load the sorted list from a file for speed
self.syn_sort = self.syn.load_sorted_classes()
self.t_incr = 1/(epochs+1)
self.t = t # should equal zero ofc
self.u1 = -0.01 # bezier steepness in the beginning (flat 0 at start if negative)
self.u2 = 0.02 # bezier steepness towards the end
self.syn_ratio = self.__bezier(self.t, self.u1, self.u2)
self.datasets = [self.sos, self.syn]
from collections import Counter
self.syn_counter = 0
self.generate_samples()
self.nsamples = len(self.samples)
if self.nsamples % self.classes != 0:
print("Number of samples", self.nsamples, "should be divisible by", self.classes)
exit(0)
if train:
print("Training with %s hybrid samples" % (len(self.samples)))
def __bezier(self, t, u1, u2):
# instead of nsamples use len(self)? or update self.nsamples in the len function occiasinaly?
# u0 = 0.0 # fixed
# u3 = 1.0 # fixed
# see bezier.py to graph stuff and some extra settings?
return max(0, min(1, (3*u1*((1-t)**2))*t+3*u2*(1-t)*(t**2)+t**3))
def generate_samples(self):
n_real_samples = np.clip(np.round_(self.syn_ratio * np.array(self.sos_n)), 0, self.class_n)
# You can take the absolute value of this array i think
missing_real_samples = n_real_samples - self.class_n
if self.real_samples is None:
real_samples = [sample(self.sos_sort[idx], int(n)) if n > 0 else [] for idx, n in enumerate(n_real_samples)]
else:
real_samples = [sample(self.sos_sort[idx], n) for idx, n in enumerate(self.real_samples)]
if self.syn_samples is None:
if self.real_samples:
missing_real_samples = self.real_samples - self.class_n
syn_samples = [sample(self.syn_sort[idx], abs(int(n))) if n < 0 else [] for idx, n in enumerate(missing_real_samples)]
else:
syn_samples = [sample(self.syn_sort[idx], n) for idx, n in enumerate(self.syn_samples)]
syn_samples = list(itertools.chain.from_iterable(syn_samples)) # flatten
real_samples = list(itertools.chain.from_iterable(real_samples)) # flatten
self.samples = [(0,s) for s in real_samples] # idxs refer to the two datasets
self.samples += [(1,s) for s in syn_samples]
shuffle(self.samples)
# Maybe make a choise if you want a balanced sample from the real data as well
def __getitem__(self, index):
s = self.samples[index]
d = self.datasets[s[0]]
if index >= self.nsamples-1:
self.t += self.t_incr
self.syn_ratio = self.__bezier(self.t, self.u1, self.u2)
self.generate_samples()
if s[0] == 1:
self.syn_counter += 1
return d[s[1]]
# We will probably update this dynamically, but keep it in sync with the batch size! (nice and divedable?)
def __len__(self):
return self.nsamples
if __name__ == "__main__":
from collections import Counter
t = [SOSDataset.Rescale((232, 232)), SOSDataset.RandomCrop((SOSDataset.DATA_W, SOSDataset.DATA_H))]
epochs=20
# syn_samples = [4700, 5400, 8023, 8200, 8700]
# real_samples = [1101, 1100, 1604, 1058, 853]
hd = HybridEqualDataset(epochs=epochs, transform=t, train=True, t=0.775, grow_f=6.2952)
samples = len(hd)
for epoch in range(epochs+2):
classes = Counter()
for s in range(samples):
try:
classes[int(hd[s][1])] += 1
except:
print(s)
print(samples)
exit(0)
print("All", sorted(classes.items(), key=lambda pair: pair[0], reverse=False))
# print(hd.syn_counter)
# print("All", sorted(hd.syn_counter.items(), key=lambda pair: pair[0], reverse=False))
hd.syn_counter = 0
print("------------------------------")
# exit(0)