-
Notifications
You must be signed in to change notification settings - Fork 2
/
Run2.py
440 lines (329 loc) · 16 KB
/
Run2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 15 06:20:25 2019
@author: Administrator
"""
from io import open
import unicodedata
import string
import re
import random
import argparse
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#device = torch.device("cpu")
print("It's running by:", device)
#device = torch.device("cpu")
parser = argparse.ArgumentParser(description='This is the description')
#learning
learn = parser.add_argument_group('learning options')
learn.add_argument('--lr', type= float, default= 0.01, help = 'learning rate')
learn.add_argument('--dropout', type = float, default = 0.1, help = 'Dropout rate')
learn.add_argument('--hidden_size', type = int, default = 256, help = 'size of hidden_layer')
#language processing
lang = parser.add_argument_group('language processing options')
lang.add_argument('--MAX_LENGTH', type = int, default = 10, help = ' Here the maximum length is 10 words to simplify training.')
lang.add_argument('--data_path', type = str, default = 'data/%s-%s.txt', help = 'Path of training data' )
lang.add_argument('--input_lang',type = str, default = 'eng', help = 'input language name')
lang.add_argument('--output-lang', type = str, default = 'spa', help = 'output language name')
#Training arguments
trainArgs = parser.add_argument_group('Training argument')
trainArgs.add_argument('--n_iters', type = int, default = 7500, help = 'number of iters times') #75000
trainArgs.add_argument('--print_every', type = int, default = 500, help = 'to print results after how many times run ') # 5000
args = parser.parse_args()
SOS_token = 0
EOS_token = 1
#---------------------------------------------------------------Dataset preprocess----------------------------------------------------
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: "SOS", 1:"EOS"}
self.n_words = 2 # count SOS and EOS
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
def unicodeToAscii(s): #Turn a Unicode string to plain ASCII
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
def normalizeString(s): # Normalize String: Lowercase, trim, and remove non-letter characters
s = unicodeToAscii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
def readLangs(lang1, lang2, reverse=False): # read Dataset
print("Reading lines...")
#Read the file and split into lines by open().read().strip().split()
#string.split(sepatator, max) 'sepatator'
lines = open(args.data_path %(lang1, lang2), encoding='utf-8').read().strip().split('\n') # eng-fra has 164327 sentence pairs eng-cmn has 20403 sentence pairs
#Split every line into pairs and normalize
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang, output_lang, pairs
MAX_LENGTH = 10
eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s ",
"you are", "you re ",
"we are", "we re ",
"they are", "they re "
)
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH and \
p[1].startswith(eng_prefixes)
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
def prepareData(lang1, lang2, reverse=False): # reverse may improve the result
input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted words:")
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs
input_lang, output_lang, pairs = prepareData(args.input_lang, args.output_lang, True) # input langauage pairs. Datasets from https://www.manythings.org/anki/
print(random.choice(pairs))
#------------------------------------------------------------------------------
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)#A simple lookup table that stores embeddings of a fixed dictionary and size.
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self): #initial Hidden-layer
return torch.zeros(1, 1, self.hidden_size, device = device)
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output = F.relu(output)
output = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
class AttnDecoderRNN(nn.Module): # 'Neural Machine Translation by Jointly Learning to Align and Translate'
def __init__(self, hidden_size, output_size, dropout_p=args.dropout, max_length=args.MAX_LENGTH): #
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size) # A simple lookup table that stores embeddings of a fixed dictionary and size.
self.attn = nn.Linear(self.hidden_size * 2, self.max_length) #
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self): # Initial hidden-layer
return torch.zeros(1, 1, self.hidden_size, device=device)
#------------------------------------------------------------------------------
def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
#------------------------------------------------------------------------------
teacher_forcing_ratio = 0.5
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=args.MAX_LENGTH):
encoder_hidden = encoder.initHidden() # init hidden layer
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
for ei in range(input_length): # word by word
encoder_output, encoder_hidden = encoder(
input_tensor[ei], encoder_hidden)
encoder_outputs[ei] = encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device)
decoder_hidden = encoder_hidden
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
# if use_teacher_forcing:
# # Teacher forcing: Feed the target as the next input
# for di in range(target_length):
# decoder_output, decoder_hidden, decoder_attention = decoder(
# decoder_input, decoder_hidden, encoder_outputs)
# loss += criterion(decoder_output, target_tensor[di])
# decoder_input = target_tensor[di] # Teacher forcing
#
# else:
# Without teacher forcing: use its own predictions as the next input
for di in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input
loss += criterion(decoder_output, target_tensor[di])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
#--------------------print time consume-------------------------------------------------------------
import time
import math
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
#--------------------------------------------------------------------------------------------
def trainIters(encoder, decoder, n_iters, print_every=100, plot_every=10, learning_rate=args.lr):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every print_every
plot_loss_total = 0 # Reset every plot_every
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensorsFromPair(random.choice(pairs))
for i in range(n_iters)]
criterion = nn.NLLLoss()
for iter in range(1, n_iters + 1):
training_pair = training_pairs[iter - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
if iter % print_every == 0: # print results
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg))
if iter % plot_every == 0: # plot results
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
showPlot(plot_losses)
#torch.save(encoder.state_dict(), './model_parameters/encoder.weights') #Returns a dictionary containing a whole state of the module.
#torch.save(decoder.state_dict(), './model_parameters/decoder.weights')
#------------------------------------------------------------------------------
# plot the result
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
import numpy as np
def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
#------------------------------------------------------------------------------
# evaluate the result
def evaluate(encoder, decoder, sentence, max_length=args.MAX_LENGTH):
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],
encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) # SOS
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('input:', pair[0])
print('target:', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('predict:', output_sentence)
print('')
#------------------------------------------------------------------------------
#hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, args.hidden_size).to(device) # Enconder
attn_decoder1 = AttnDecoderRNN(args.hidden_size, output_lang.n_words, dropout_p=args.dropout).to(device)#decoder
#------------Load trained weights-------------------------------
encoder1.load_state_dict(torch.load('./model_parameters/encoder.weights'))
attn_decoder1.load_state_dict(torch.load('./model_parameters/decoder.weights'))
encoder1 = encoder1.eval()
attn_decoder1 = attn_decoder1.eval()
#------------------------------------------------------
#if torch.cuda.device_count() >1: # Multi-GPUs
# print("Let's use", torch.cuda.device_count(),"GPUs!")
# encoder1 = nn.DataParallel(encoder1)
# attn_decoder1 = nn.DataParallel(attn_decoder1)
#encoder1.to(device)
#attn_decoder1.to(device)
trainIters(encoder1, attn_decoder1, args.n_iters, print_every=args.print_every) # hyperparameters
evaluateRandomly(encoder1, attn_decoder1)