-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday20.py
151 lines (115 loc) · 4.81 KB
/
day20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import re
import math
from typing import List, Optional
from functools import reduce
with open("./input.txt") as f:
data = f.read().strip()
chunks_raw = data.split('\n\n')
class Chunk:
def __init__(self, data):
data = data.split('\n')
self.title_nr = int(re.match(r"Tile (\d+):", data[0]).group(1))
data = list(map(lambda x: list(x), data[1:]))
self.top = ''.join(data[0])
self.bottom = ''.join(data[-1])
self.right = ''.join([row[-1] for row in data])
self.left = ''.join([row[0] for row in data])
self.data = [''.join(row[1:-1]) for row in data[1:-1]]
self.state_idx = 0
self.states = []
self.data_states = []
self.build_state_array()
def get_border_part(self, idx):
return self.states[self.state_idx][idx]
def get_data(self):
return self.data_states[self.state_idx]
def set_state(self, i):
self.state_idx = i
self.top, self.right, self.bottom, self.left = self.states[self.state_idx]
def build_state_array(self):
for i in range(4):
self.states.append((self.top, self.right, self.bottom, self.left))
self.data_states.append(self.data)
self.add_flips()
self.rotateRight()
def add_flips(self):
self.flipVertically()
self.states.append((self.top, self.right, self.bottom, self.left))
self.data_states.append(self.data)
self.flipVertically()
def rotateRight(self):
self.right, self.left = self.right[::-1], self.left[::-1]
self.top, self.right, self.bottom, self.left = self.left, self.top, self.right, self.bottom
self.data = list(map(''.join, zip(*reversed(self.data))))
def flipVertically(self):
self.top, self.bottom = self.bottom, self.top
self.right, self.left = self.right[::-1], self.left[::-1]
self.data = [x for x in reversed(self.data)]
chunks = [Chunk(chunk) for chunk in chunks_raw]
N = int(round(math.sqrt(len(chunks))))
grid: List[List[Optional[Chunk]]] = [[None] * N for _ in range(N)]
dirs = [(1, 0, 1, 3), (-1, 0, 3, 1), (0, 1, 2, 0), (0, -1, 0, 2)] # dx, dy, current_border, matching_border
def tile_matches_to_grid(tile, grid_idx):
x, y = grid_idx // N, grid_idx % N
for dy, dx, tile_border_idx, border_idx in dirs:
nx, ny = x + dx, y + dy
if nx < 0 or nx >= N or ny < 0 or ny >= N or grid[nx][ny] is None: continue
current_tile_border = tile.get_border_part(tile_border_idx)
neighbour_tile_border = grid[nx][ny].get_border_part(border_idx)
if current_tile_border != neighbour_tile_border:
return False
return True
def solve_puzzle(available_tiles, grid_idx=0):
if grid_idx >= N * N:
return True
x, y = grid_idx // N, grid_idx % N # x - row, y - column
for tile in available_tiles.copy():
available_tiles.remove(tile)
for i in range(len(tile.states)):
tile.set_state(i)
if tile_matches_to_grid(tile, grid_idx):
grid[x][y] = tile
if solve_puzzle(available_tiles, grid_idx + 1):
return True
grid[x][y] = None
tile.set_state(0) # clear state
available_tiles.append(tile)
return False
solve_puzzle(chunks)
print(reduce(lambda v, a: a * v, (grid[x][y].title_nr for x in [0, N-1] for y in [0, N-1]), 1))
# 2 star
final_image = []
chunk_h = len(grid[0][0].get_data())
for x in range(N):
for h in range(chunk_h):
final_image.append(''.join([grid[x][y].get_data()[h] for y in range(N)]))
final_permutations = []
for i in range(4):
final_permutations.append(final_image)
final_image = [x for x in reversed(final_image)] # flip
final_permutations.append(final_image)
final_image = list(map(''.join, zip(*reversed(final_image)))) # rotate right
image_size = chunk_h * N
sea_monster = """
#
# ## ## ###
# # # # # # """.strip('\n').split('\n')
sea_monster_len = len(sea_monster[0])
sea_monster_h = len(sea_monster)
res = []
for f in final_permutations:
hash_cnt = '\n'.join(f).count('#')
for x in range(image_size - sea_monster_h + 1):
for y in range(image_size - sea_monster_len + 1):
good = True
for sx in range(sea_monster_h):
for sy in range(sea_monster_len):
sc = sea_monster[sx][sy]
if sc != '#': continue
if f[x+sx][y+sy] != '#':
good = False
break
if good:
hash_cnt -= ''.join(sea_monster).count('#')
res.append(hash_cnt)
print(min(list(set(res))))