-
Notifications
You must be signed in to change notification settings - Fork 4
/
demo_DTM.asv
184 lines (159 loc) · 7.29 KB
/
demo_DTM.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This code is for the paper:
% Runmin Cong, Jianjun Lei, Huazhu Fu, Junhui Hou, Qingming Huang, and Sam Kwong,
% Going from RGB to RGBD saliency: A depth-guided transformation model,
% IEEE Transactions on Cybernetics, 2019.
% It can only be used for non-comercial purpose. If you use our code, please cite our paper.
% For any questions, please contact rmcong@126.com runmincong@gmail.com.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;
clc;
addpath(genpath('.'));
addpath(genpath('./piotr_toolbox/'));%piotr toolbox
%%------------------------set parameters---------------------%%
spnumber = 200;
theta = 10;% (1/sigma^2)=10,sigma^2=0.1
alpha = 0.99;
suffix = '_RBD.png';
imgRoot = './data/RGB/';
depRoot = './data/depth/';
RGBSalRoot = './data/RBD/';
saldir = './results/DTM/';
supdir = './results/superpixels_200/';
mkdir(supdir);
mkdir(saldir);
rgbFilesbmp = dir(fullfile(imgRoot, '*.bmp'));
rgbFiles = dir(fullfile(imgRoot, '*.jpg'));
depFiles = dir(fullfile(depRoot, '*.jpg'));
if isempty(rgbFilesbmp)
sprintf('the input image format is ".bmp"');
rgbFilesbmp = dir(fullfile(imgRoot, '*.jpg'));
for i = 1:length(rgbFilesbmp)
imgNamebmp = rgbFilesbmp(i).name;
rgbbmp = imread(fullfile(imgRoot, imgNamebmp));
savePath = fullfile(imgRoot, [imgNamebmp(1:end-4), '.bmp']);
imwrite(rgbbmp,savePath,'bmp');
end
rgbFilesbmp = dir(fullfile(imgRoot, '*.bmp'));
end
if length(rgbFiles) ~= length(depFiles)
error('the number of files is mismatching');
end
for ii=1:length(rgbFiles)
disp(ii);
tic
% load RGB data
imgName = rgbFiles(ii).name;
imgNamebmp = rgbFilesbmp(ii).name;
imgPathbmp = [imgRoot, imgNamebmp];
input_im = double(imread(fullfile(imgRoot, imgName)));
input_im(:,:,1) = normalize(input_im(:,:,1));
input_im(:,:,2) = normalize(input_im(:,:,2));
input_im(:,:,3) = normalize(input_im(:,:,3));
[m,n,k] = size(input_im);
input_vals = reshape(input_im, m*n, k);
% load depth data
depName = depFiles(ii).name;
if strfind( depName(1:strfind(depName,'.')-1), imgName(1:strfind(imgName,'.')-1) )
depth = double(imread(fullfile(depRoot, depName)));
depthnorm = normalize(depth);
else
error('depth map name is mismatching.');
end
% load RGB saliency data
salName = [imgName(1:end-4) suffix];
RGBsal = double(imread(fullfile(RGBSalRoot, salName)));
RGBsalnorm = normalize(RGBsal);
%% SLIC
if exist([supdir imgNamebmp(1:end - 4) '.dat'],'file')
disp('Skipping SLIC...');
spname = [supdir imgNamebmp(1:end - 4) '.dat'];
superpixels = ReadDAT([m,n],spname);
else
disp('Performing SLIC...');
comm = ['SLICSuperpixelSegmentation' ' ' imgPathbmp ' ' int2str(20) ' ' int2str(spnumber) ' ' supdir];
system(comm);
spname = [supdir imgNamebmp(1:end - 4) '.dat'];
superpixels = ReadDAT([m,n],spname);
end
[ sup_info, adjc, inds] = get_sup_info( superpixels, input_vals, depthnorm, RGBsalnorm, m, n );
spnum = sup_info{7};
regions = calculateRegionProps(spnum,superpixels);
% depth confidence measure
lammda = get_dep_confidence( depthnorm );
%% Graph Construction and Manifold Ranking
dep_vals = sup_info{2};
rgb_vals = sup_info{1};
seg_vals = colorspace('Lab<-', rgb_vals);% spnumn*3
dep_matrix1 = ones(spnum,1) * dep_vals';
dep_matrix2 = dep_matrix1';
Dlab = DistanceZL(seg_vals, seg_vals, 'euclid');
Ddep = abs(dep_matrix2 - dep_matrix1);
Argbd = exp( -theta * normalize( Dlab + lammda * Ddep ) );%spnum×spnum
Argb = exp( -theta * normalize( Dlab ) );%spnum×spnum
Adep = exp( -theta * normalize( lammda * Ddep ) );%spnum×spnum
Prgbd = calManifoldRanking( Argbd,adjc,spnum,alpha );
Prgb = calManifoldRanking( Argb,adjc,spnum,alpha );
Pdep = calManifoldRanking( Adep,adjc,spnum,alpha );
toc
tic
%% Multi-Level RGBD Saliency Detection (MLDS)
% Global saliency via RGBD compactness
PArgb = (Prgb*Argb)';%扩散处理后的节点的相似矩阵
PAdep = (Pdep*Adep)';%扩散处理后的节点的相似矩阵
num_vals = sup_info{6};
PNArgb = PArgb.*(ones(spnum,1)*num_vals');%每个超像素与其他超像素的相似性乘以其包含的像素个数 spnum×spnum
PNAdep = PAdep.*(ones(spnum,1)*num_vals');%每个超像素与其他超像素的相似性乘以其包含的像素个数 spnum×spnum
Sumrgb = sum(PNArgb,2);% 每个超像素与其他所有超像素的(相似值*像素个数)的和
Sumdep = sum(PNAdep,2);% 每个超像素与其他所有超像素的(相似值*像素个数)的和
x_vals = sup_info{4}(:,1);
y_vals = sup_info{4}(:,2);
comSal_sup = calCompactness(PNArgb,PNAdep,Sumrgb,Sumdep,x_vals,y_vals,m,n,spnum);
% CSal = Sup2Sal(comSal_sup,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,CSal,saldir,[imgName(1:end-4) '_CS.png'] )
% Local saliency via geodesic distance
bg_all = extract_bg_sp( superpixels, m, n );% extract the boundary of the iamge
colDistM = GetDistanceMatrix(seg_vals);
adjcMatrix = GetAdjMatrix(superpixels, max(max(superpixels)));
[clipVal, geoSigma, neiSigma] = EstimateDynamicParas(adjcMatrix, colDistM);
[wCtr, bdCon, bgWeight] = EstimateBgProb(colDistM, adjcMatrix, bg_all', clipVal, geoSigma);
Pbg = wCtr.*exp( -theta * ( sup_info{3} + lammda * sup_info{2} ));
[~,ind] = sort(Pbg,'descend');
bg_num = ceil(0.2*spnum);
BGindex = ind(1:bg_num);
BGall = unique(union(bg_all,BGindex));
Drgbd = exp( theta * normalize( Dlab + lammda * Ddep ) );
geoDist = GeodesicSaliency2(adjcMatrix, BGall, Prgbd);
% GSal = Sup2Sal(geoDist,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,GSal,saldir,[imgName(1:end-4) '_GS.png'] )
SML_sup = normalize(comSal_sup+(geoDist.*comSal_sup));
SMLLP_sup = LabelPropagation( Argbd, adjc, SML_sup, spnum );
% SMLLP = Sup2Sal(SMLLP_sup,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,SMLLP,saldir,[imgName(1:end-4) '_MLS.png'] )
stage1_sup = 0.5*sup_info{3}; + 0.5*SMLLP_sup;
% stage1 = Sup2Sal(stage1_sup,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,stage1,saldir,[imgName(1:end-4) '_stage1.png'] )
toc
%% Depth-Guided Saliency Refinement (DGSR)
tic
[ initSal, rdsp_fusion, RDSP_fusion ] = RDSP( sup_info, m, n, adjc, seg_vals, SMLLP_sup, lammda );
sal_rdsp = normalize(initSal + rdsp_fusion);
% MLSd = Sup2Sal(initSal,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,MLSd,saldir,[imgName(1:end-4) '_dok.png'] )
% DRS = Sup2Sal(sal_rdsp,regions,m,n,spnum);%M*N % double M*N 0-1
% saveimg( m,n,DRS,saldir,[imgName(1:end-4) '_DRS.png'] )
toc
tic
%% Saliency Optimization with Depth Constraints (SODC)
W1 = Argb.*adjc;
d1 = sum(W1,2);%spnum*1
D1 = sparse(1:spnum,1:spnum,d1);% spnum*spnum
INN = sparse(1:spnum,1:spnum,ones(spnum,1)); % 单位向量 spnum*spnum
W2 = Adep.*adjc;
d2 = sum(W2,2);%spnum*1
D2 = sparse(1:spnum,1:spnum,d2);% spnum*spnum
Sf = (INN + (D1-W1) + (D2-W2))\( sal_rdsp );
STM = Sup2Sal(Sf,regions,m,n,spnum);%M*N % double M*N 0-1
saveimg( m,n,STM,saldir,[imgName(1:end-4) suffix(1:end-4) '_DTM.png'] )
toc
end