-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
91 lines (71 loc) · 3.4 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""Example how to use ndiminterpolation.py"""
__author__ = "Robert Nikutta <robert.nikutta@gmail.com>"
__version__ = '20150416'
import numpy as N
import matplotlib
import pylab as p
import ndiminterpolation
def example(plot=True,number=1000):
import pylab as p
import matplotlib
"""Example on how to use class NdimInterpolation.
Usage
-----
ipython --pylab
In[0]: import example
In[1]: ip, datacube, theta, mywave = example.example()
# n-dim interpolation object, 3d-cube, sequences of unique parameter values, array of interpolation values
Parameters
----------
plot : bool
If True (default), will display a visualization of the data
hypercube. Click a few times on the figure to move through the
wavelength slices. If False, the figure won't be displayed.
number : int or None
If not None a benchmark of the interpolation speed will be
performed, with number repetitions. Default: number=1000.
"""
### Generate some f(x,y,wave) data
# two fantasy parameters and a wavelength array
x = N.linspace(-2,2,100) # unique ascending list of parameter1 values
y = N.linspace(-1,1.5,60) # unique ascending list of parameter2 values
wave = N.linspace(0.1,3.,10) # wavelength list
# sequence of parameter arrays (each a unique sequence)
theta = N.array((x,y,wave))
# hypercube to interpolate on
datacube = N.zeros((x.size,y.size,wave.size))
X, Y = N.meshgrid(x,y);
for j,w in enumerate(wave):
# 2d Gaussian whose center moves along x with increasing wavelength, i.e. a 3-d hypercube
datacube[...,j] = N.exp(-N.sqrt(X**2+(Y-w)**2)).T
xmin, xmax = theta[0].min(), theta[0].max()
ymin, ymax = theta[1].min(), theta[1].max()
# Show the data; click on the image for successive wavelength views
if plot == True:
extent = (xmin,xmax,ymin,ymax)
norm = matplotlib.colors.Normalize(datacube.min(),datacube.max())
for j in xrange(wave.size):
p.clf()
p.imshow(datacube[...,j],extent=extent,origin='lower',cmap=matplotlib.cm.rainbow,interpolation='none',norm=norm)
cb = p.colorbar()
p.title("View (wavelength) %d of %d" % ((j+1),wave.size))
print "Click on the image repeatedly for successive wavelength views"
p.waitforbuttonpress()
# create interpolation object
ip = ndiminterpolation.NdimInterpolation(datacube,theta) # defaults are order=1 and mode='log'
# example of usage: interpolate on another wave grid (mywave), with any combination of parameter values (vector)
mywave = N.linspace(0.5,2.9,50)
vector = [0.5,1]
sed = ip(vector,mywave) # the interpolated 'SED'
# speedtest
if number is not None:
import timeit
def speedtest():
# generate a random vector from the support of theta (here uniform in all dimensions)
vector = [(xmax-xmin) * N.random.random() + xmin, (ymax-ymin) * N.random.random() + ymin]
sed = ip(vector,mywave)
print "Benchmarking (%d interpolations)..." % number
duration = timeit.timeit(speedtest,number=number)
duration_per_call = duration/float(number)
print "Duration = %.2f seconds --> %.2e seconds per interpolation --> %d interpolations per second" % (number,duration_per_call,(1./duration_per_call))
return ip, datacube, theta, mywave