-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlevy.m
136 lines (125 loc) · 4.87 KB
/
levy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
function [G, J, handle] = levy (w, gain, phase, Q, weights)
% [G, J, handle] = levy (w, gain, phase, Q, weights)
% This function returns a model for a plant with a known frequency behaviour.
% The model is
%
% Q.num(1) Q.num(2) Q.num(end-2) Q.num(end-1)
% b(1)*s + b(2)*s + ... + b(end-2)*s + b(end-1)*s + b(end)
% ------------------------------------------------------------------------------------------------
% Q.den(1) Q.den(2) Q.den(end-2) Q.den(end-1)
% a(1)*s + a(2)*s + ... + a(end-2)*s + a(end-1)*s + 1
%
% == INPUTS ==
%
% The function receives the gain (dB) and the phase (degrees) for frequencies w (rad/s).
% Q.num is a vector with numerator coefficients and Q.den a vector with denominator coefficients.
% E.g. for model
%
% b(1)*s + b(2)
% ----------------------
% 2
% a(1)*s + a(2)*s + 1
%
% we make
% Q.num = [1 0]; Q.den = [2 1 0]
% Notice that order 0 coefficients are always presumed and must be given as the last elements in Q.num and Q.den.
% If weights is 0 all frequencies carry the same weight in the result;
% otherwise, weights are used to try to correct a high-frequency bias by weighting more low frequency data.
%
% == OUTPUTS ==
%
% G is a structure with fields num and den, containing vectors b and a respectively.
% J is the quadratic error per sampling frequency.
% If output handle exists, a handle for a Bode plot will be returned.
%
% == THEORY ==
%
% See Val�rio, Tejado - IDENTIFYING A NON-COMMENSURABLE FRACTIONAL TRANSFER FUNCTION FROM A FREQUENCY RESPONSE. In: FSS 2013
% (second formulation, summed matrices)
%
% Duarte Val�rio 2007-2013
if nargin < 5, weights = 0; end % no weights by default
if Q.num(end) || Q.den(end)
error('Q.num(end) and Q.den(end) must be 0.')
end
if size(w, 1) < size(w, 2)
w = w'; % now w is a column vector for sure
end
if size(gain, 1) < size(gain, 2)
gain = gain'; % now w is a column vector for sure
end
if size(phase, 1) < size(phase, 2)
phase = phase'; % now w is a column vector for sure
end
n = length(Q.den)-1;
m = length(Q.num)-1;
Q.num = Q.num(end:-1:1); % this is just for convenience: Matlab uses decreasing orders in tf, while the paper this file is based upon uses increasing orders
Q.den = Q.den(end:-1:1);
A = 10.^(gain/20); % this is the gain in absolute value
ef = deg2rad(phase); % this is the phase is rad
if weights
weight = [w(2)-w(1);
w(3:end)-w(1:end-2);
w(end)-w(end-1)];
weight = (weight/2) ./ (w.^2);
else
weight = ones(size(w)); % no weights = all weights equal to 1
end
M0 = eye(n+1,n+1)*0;
M1 = eye(n+1,m+1)*0;
M2 = eye(m+1,n+1)*0;
M3 = eye(m+1,m+1)*0;
for s = 1:length(w)
for i = 0:n
for k = 0:n
M0(k+1,i+1) = M0(k+1,i+1) + A(s) * w(s)^(Q.den(i+1)) * cos( (Q.den(k+1)-Q.den(i+1))*pi/2 ) * weight(s);
end
for k = 0:m
M2(k+1,i+1) = M2(k+1,i+1) + A(s) * w(s)^(Q.den(i+1)) * cos( ef(s)-(Q.num(k+1)-Q.den(i+1))*pi/2 ) * weight(s);
end
end
for i = 0:m
for k = 0:n
M1(k+1,i+1) = M1(k+1,i+1) - w(s)^(Q.num(i+1)) * cos( ef(s)+(Q.den(k+1)-Q.num(i+1))*pi/2 ) * weight(s);
end
for k = 0:m
M3(k+1,i+1) = M3(k+1,i+1) - w(s)^(Q.num(i+1)) * cos( (Q.num(k+1)-Q.num(i+1))*pi/2 ) * weight(s);
end
end
end
MAT = [M0 M1;
M2 M3];
b = -MAT(2:n+m+2, 1);
MAT = MAT(2:n+m+2, 2:n+m+2);
coefficients = MAT \ b;
G.num = (coefficients(end:-1:n+1)).'; % ...again the increasing/decreasing order thing
G.den = [coefficients(n:-1:1); 1]';
% index J
if nargout > 1 % quadratic error was required
tempNum = 0;
for c = 1:length(G.num)
tempNum = tempNum + G.num(c) * (1i*w).^(Q.num(m-c+2)); % strage way to match G and Q... because of the increasing/decreasing order thing again!
end
tempDen = 0;
for c = 1:length(G.den)
tempDen = tempDen + G.den(c) * (1i*w).^(Q.den(n-c+2));
end
J = sum((abs(10.^(gain/20).*exp(1i*deg2rad(phase)) - tempNum./tempDen)).^2) / length(w);
end
% Bode plot
if nargout == 3 % a Bode plot was required
wNew = logspace(floor(log10(min(w))), ceil(log10(max(w))), max(50, length(w))); % vector with frequencies for drawing the Bode plot
tempNum = 0;
for c = 1:length(G.num)
tempNum = tempNum + G.num(c) * (1i*wNew).^(Q.num(m-c+2));
end
tempDen = 0;
for c = 1:length(G.den)
tempDen = tempDen + G.den(c) * (1i*wNew).^(Q.den(n-c+2));
end
gainNew = 20 * log10(abs(tempNum ./ tempDen));
phaseNew = rad2deg(unwrap(angle(tempNum ./ tempDen)));
handle = figure;
subplot(2,1,1), semilogx(w,gain,'.', wNew,gainNew)
subplot(2,1,2), semilogx(w,phase,'.', wNew,phaseNew)
end