This repository has been archived by the owner on Jul 11, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
91 lines (65 loc) · 2.29 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten
from keras.layers import Conv2D,MaxPooling2D
import os
train_data_dir='data/train/'
validation_data_dir='data/test/'
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
horizontal_flip=True,
fill_mode='nearest')
validation_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
color_mode='grayscale',
target_size=(48, 48),
batch_size=32,
class_mode='categorical',
shuffle=True)
validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
color_mode='grayscale',
target_size=(48, 48),
batch_size=32,
class_mode='categorical',
shuffle=True)
class_labels=['Angry','Disgust', 'Fear', 'Happy','Neutral','Sad','Surprise']
img, label = train_generator.__next__()
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Conv2D(256, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(7, activation='softmax'))
model.compile(optimizer = 'adam', loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
train_path = "data/train/"
test_path = "data/test/"
num_train_imgs = 0
for root, dirs, files in os.walk(train_path):
num_train_imgs += len(files)
num_test_imgs = 0
for root, dirs, files in os.walk(test_path):
num_test_imgs += len(files)
print(num_train_imgs)
print(num_test_imgs)
epochs=100
history=model.fit(train_generator,
steps_per_epoch=num_train_imgs//32,
epochs=epochs,
validation_data=validation_generator,
validation_steps=num_test_imgs//32)
model.save('models/model_file.h5')