-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathevaluation_wrapper.py
377 lines (300 loc) · 17.2 KB
/
evaluation_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import csv
import imghdr
import os
from functools import lru_cache
import keras
import pandas as pd
from pycocotools.coco import COCO
import matplotlib.pyplot as plt
import data_generator
import evaluation
import hourglass
import util
from constants import *
class EvaluationWrapper():
def __init__(self, model_sub_dir, epoch=None, model_base_dir=DEFAULT_MODEL_BASE_DIR):
self.update_model(model_sub_dir, epoch=epoch, model_base_dir=model_base_dir)
representative_set_df = pd.read_pickle(os.path.join(DEFAULT_PICKLE_PATH, 'representative_set.pkl'))
self.representative_set_gen = data_generator.DataGenerator( df=representative_set_df,
base_dir=DEFAULT_VAL_IMG_PATH,
input_dim=INPUT_DIM,
output_dim=OUTPUT_DIM,
num_hg_blocks=1, # does not matter
shuffle=False,
batch_size=len(representative_set_df), # single batch
online_fetch=False,
is_eval=True)
h = hourglass.HourglassNet(NUM_COCO_KEYPOINTS,DEFAULT_NUM_HG,INPUT_CHANNELS,INPUT_DIM,OUTPUT_DIM)
_, val_df = h.load_and_filter_annotations(DEFAULT_TRAIN_ANNOT_PATH,DEFAULT_VAL_ANNOT_PATH,1.0)
self.val_gen = data_generator.DataGenerator(df=val_df,
base_dir=DEFAULT_VAL_IMG_PATH,
input_dim=INPUT_DIM,
output_dim=OUTPUT_DIM,
num_hg_blocks=1, # does not matter
shuffle=False,
batch_size=DEFAULT_BATCH_SIZE,
online_fetch=False,
is_eval=True)
self.cocoGt = COCO(DEFAULT_VAL_ANNOT_PATH)
print("Initialized Evaluation Wrapper!")
"""
K.clear_session() is useful when you're creating multiple models in succession,
such as during hyperparameter search or cross-validation. Each model you train
adds nodes (potentially numbering in the thousands) to the graph. TensorFlow
executes the entire graph whenever you (or Keras) call tf.Session.run() or
tf.Tensor.eval(), so your models will become slower and slower to train, and you
may also run out of memory. Clearing the session removes all the nodes left over
from previous models, freeing memory and preventing slowdown.
See https://stackoverflow.com/questions/50895110/what-do-i-need-k-clear-session-and-del-model-for-keras-with-tensorflow-gpu
"""
def __del__(self):
# Clear backend session to prevent running out of memory
keras.backend.clear_session()
def update_model(self, model_sub_dir, epoch=None, model_base_dir=DEFAULT_MODEL_BASE_DIR):
# Clear backend session to prevent running out of memory
keras.backend.clear_session()
self.model_sub_dir = model_sub_dir
if epoch is None:
self.epoch = util.get_highest_epoch_file(model_base_dir=model_base_dir, model_subdir=model_sub_dir)
print(f'Automatically using largest epoch {self.epoch:3d}...\n')
else:
self.epoch = epoch
self.eval = evaluation.Evaluation(model_base_dir=model_base_dir, model_sub_dir=model_sub_dir, epoch=self.epoch)
"""
Run the model instance on either an image path or a directory of images.
## Parameters:
path : {string}
File path to the image/directory.
visualize_heatmaps : {bool}
Output a stacked heatmap visualization for each image
visualize_scatter : {bool}
Output a scatter plot of the predicted joint locations
visualize_skeleton : {bool}
Link the joint locations together into a skeleton
average_flip_prediction : {bool}
Run both the original image and a mirrored image through the model, averaging the predictions to obtain
the final predictions.
"""
def predict_on_path(self, path, visualize_heatmaps=False, visualize_scatter=True, visualize_skeleton=True, average_flip_prediction=True):
image_paths = []
# https://www.w3resource.com/python-exercises/python-basic-exercise-85.php
if os.path.isdir(path):
files = os.listdir(path)
for file in files:
filepath = os.path.join(path, file)
if imghdr.what(filepath) is not None:
image_paths.append(filepath)
elif os.path.isfile(path):
image_paths.append(path)
else:
# It is a special file (socket, FIFO, device file)
raise ValueError('Invalid path provided')
for image_path in image_paths:
# Number of hg blocks doesn't matter
X_batch, y_stacked = evaluation.load_and_preprocess_img(image_path, 1)
y_batch = y_stacked[0] # take first hourglass section
# https://stackoverflow.com/questions/678236/how-to-get-the-filename-without-the-extension-from-a-path-in-python
img_id = os.path.splitext(os.path.basename(image_path))[0]
img_id_batch = [img_id]
self._predict_and_visualize(
X_batch,
y_batch,
img_id_batch,
visualize_heatmaps=visualize_heatmaps,
visualize_scatter=visualize_scatter,
visualize_skeleton=visualize_skeleton,
average_flip_prediction=average_flip_prediction
)
def visualizeHeatmaps(self, genEnum=Generator.representative_set_gen):
self.visualize(genEnum=genEnum, visualize_heatmaps=True, visualize_scatter=False, visualize_skeleton=False)
def visualizeKeypoints(self, genEnum=Generator.representative_set_gen, visualize_skeleton=True, average_flip_prediction=True):
self.visualize(genEnum=genEnum, visualize_heatmaps=False, visualize_scatter=True, visualize_skeleton=visualize_skeleton, average_flip_prediction=average_flip_prediction)
# Heatmaps is by default False because it is extremely processor intensive to calculate
def visualize(self, genEnum=Generator.representative_set_gen, visualize_heatmaps=False, visualize_scatter=True, visualize_skeleton=True, average_flip_prediction=True):
gen = self._get_generator(genEnum)
gen_length = len(gen)
for i in range(gen_length):
X_batch, y_stacked, m_batch = gen[i]
y_batch = y_stacked[0] # take first hourglass section
img_id_batch = [m['ann_id'] for m in m_batch] # image IDs are the annotation IDs
self._predict_and_visualize(
X_batch,
y_batch,
img_id_batch,
visualize_heatmaps=visualize_heatmaps,
visualize_scatter=visualize_scatter,
visualize_skeleton=visualize_skeleton,
average_flip_prediction=average_flip_prediction
)
util.print_progress_bar(1.0*i/gen_length, label=f"Batch {i}/{gen_length}")
# Flush any leftover progress bar to 100%
util.print_progress_bar(1, label=f"Batch {gen_length}/{gen_length}")
print()
def calculateMetric(self, metric, epochs, genEnum, average_flip_prediction=False):
gen = self._get_generator(genEnum)
for i, epoch in enumerate(epochs):
util.print_progress_bar(1.0*i/len(epochs), label=f"Epoch {epoch}. Completed {i}/{len(epochs)}")
print('\n')
if self.epoch != epoch:
self.update_model(self.model_sub_dir, epoch=epoch, model_base_dir=DEFAULT_MODEL_BASE_DIR)
image_ids, list_of_predictions = self._full_list_of_predictions_wrapper(gen, self.model_sub_dir, self.epoch, average_flip_prediction=average_flip_prediction)
if metric == Metrics.pck:
pck = self.eval.pck_eval(list_of_predictions)
self._append_to_results_file('pck.csv', pck, pck.keys())
elif metric == Metrics.oks:
oks = self.eval.oks_eval(image_ids, list_of_predictions, self.cocoGt)
self._append_to_results_file('oks.csv', oks, oks.keys())
def _append_to_results_file(self, file_name, row_dict, header):
row_dict['epoch'] = self.epoch
row_dict['model'] = self.model_sub_dir
file_path = os.path.join(DEFAULT_OUTPUT_BASE_DIR, self.model_sub_dir, file_name)
results_exist = os.path.isfile(file_path)
with open(file_path, 'a') as f:
dict_writer = csv.DictWriter(f, delimiter=',', fieldnames=header)
if not results_exist:
dict_writer.writeheader()
dict_writer.writerow(row_dict)
def plotOKS(self, model_sub_dir):
file_path = os.path.join(DEFAULT_OUTPUT_BASE_DIR, model_sub_dir, 'oks.csv')
df = pd.read_csv(file_path)
df.plot(
x='epoch',
y=[
'Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ]',
'Average Precision (AP) @[ IoU=0.50 | area= all | maxDets= 20 ]',
'Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 20 ]',
'Average Recall (AR) @[ IoU=0.50 | area= all | maxDets= 20 ]'],
kind='line',
title=f'OKS vs. Epoch on Test Set for {model_sub_dir}',
xlabel='Epoch',
ylabel='OKS',
figsize=(15,10),
grid=True)
plt.show()
def plotPCK(self, model_sub_dir):
file_path = os.path.join(DEFAULT_OUTPUT_BASE_DIR, model_sub_dir, 'pck.csv')
df = pd.read_csv(file_path)
df.plot(
x='epoch',
y=['avg'] + COCO_KEYPOINT_LABEL_ARR,
kind='line',
title=f'PCK vs Epoch on Test Set for {model_sub_dir}',
xlabel='Epoch',
ylabel='PCK',
figsize=(15,10),
grid=True
)
plt.show()
def _predict_and_visualize(self, X_batch, y_batch, img_id_batch, visualize_heatmaps=False, visualize_scatter=True, visualize_skeleton=True, average_flip_prediction=True):
predicted_heatmaps_batch = self.eval.predict_heatmaps(X_batch)
if visualize_heatmaps:
self.eval.visualize_heatmaps(X_batch, y_batch, img_id_batch, predicted_heatmaps_batch)
if visualize_scatter or visualize_skeleton:
# Get predicted keypoints from last hourglass (last element of list)
# Dimensions are (hourglass_layer, batch, x, y, keypoint)
keypoints_batch = self.eval.heatmaps_to_keypoints_batch(predicted_heatmaps_batch)
if average_flip_prediction:
# Average predictions from original image and the untransformed flipped image to get a more accurate prediction
predicted_heatmaps_batch_2 = self.eval.predict_heatmaps(X_batch=X_batch, predict_using_flip=True)
keypoints_batch_2 = self.eval.heatmaps_to_keypoints_batch(predicted_heatmaps_batch_2)
img_id_batch = [f'{img_id}_avg_lr' for img_id in img_id_batch]
for i in range(keypoints_batch.shape[0]):
# Average predictions from normal and flipped input
keypoints_batch[i] = self._average_LR_flip_predictions(keypoints_batch[i], keypoints_batch_2[i], coco_format=False)
if visualize_skeleton:
# Plot only skeleton
img_id_batch_bg = [f'{img_id}_no_bg' for img_id in img_id_batch]
self.eval.visualize_keypoints(np.zeros(X_batch.shape), keypoints_batch, img_id_batch_bg, show_skeleton=visualize_skeleton)
# Plot skeleton with image
self.eval.visualize_keypoints(X_batch, keypoints_batch, img_id_batch, show_skeleton=visualize_skeleton)
def _average_LR_flip_predictions(self, prediction_1, prediction_2, coco_format=True):
# Average predictions from original image and the untransformed flipped image to get a more accurate prediction
original_shape = prediction_1.shape
prediction_1_flat = prediction_1.flatten()
prediction_2_flat = prediction_2.flatten()
output_prediction = prediction_1_flat
for j in range(NUM_COCO_KEYPOINTS):
# This code is required so if one version detects the keypoint (x,y,1),
# and the other doesn't (0,0,0), we don't average them to be (x/2, y/2, 0.5)
base = j * NUM_COCO_KP_ATTRBS
n = 0
x_sum = 0
y_sum = 0
vc_sum = 0 # Could be visibility or confidence
# Verify visibility flag
if prediction_1_flat[base+2] >= HM_TO_KP_THRESHOLD:
x_sum += prediction_1_flat[base]
y_sum += prediction_1_flat[base + 1]
vc_sum += prediction_1_flat[base + 2]
n += 1
if prediction_2_flat[base+2] >= HM_TO_KP_THRESHOLD:
x_sum += prediction_2_flat[base]
y_sum += prediction_2_flat[base + 1]
vc_sum += prediction_2_flat[base + 2]
n += 1
# Verify that no division by 0 will occur
if n > 0:
output_prediction[base] = round(x_sum / n)
output_prediction[base + 1] = round(y_sum / n)
output_prediction[base + 2] = 1 if coco_format else round(vc_sum / n)
## There is probably some numpy method to do this. The following line doesn't work because it doesn't account for the vis flag being 0,
## which causes the x,y to be (0,0)
# list_of_predictions[i]['keypoints'] = np.round(np.mean( np.array([ list_of_predictions[i]['keypoints'], list_of_predictions_2[i]['keypoints'] ]), axis=0 ))
if not coco_format:
output_prediction = np.reshape(output_prediction, original_shape)
return output_prediction
def _full_list_of_predictions_wrapper(self, gen, model_sub_dir, epoch, average_flip_prediction=False):
print('Predicting over all batches...')
image_ids, list_of_predictions = self._full_list_of_predictions(gen, model_sub_dir, epoch, predict_using_flip=False)
print()
if average_flip_prediction:
print('Predicting over all batches using a horizontally flipped input, with prediction coordinates transformed back...')
image_ids_2, list_of_predictions_2 = self._full_list_of_predictions(gen, model_sub_dir, epoch, predict_using_flip=True)
print()
assert image_ids == image_ids_2, "Expected the image IDs should be in the same order"
for i in range(len(list_of_predictions)):
# Average predictions from original image and the untransformed flipped image to get a more accurate prediction
averaged_predictions = self._average_LR_flip_predictions(list_of_predictions[i]['keypoints'], list_of_predictions_2[i]['keypoints'], coco_format=True)
list_of_predictions[i]['keypoints'] = averaged_predictions
return image_ids, list_of_predictions
"""
Generates a list of predictions across an entire generator.
## Parameters:
gen : {iterable}
Provides X_batch, y_stacked, and metadata_batch data
model_subdir : {string}
Not used, but required for caching purposes
epoch : {string or int}
Not used, but required for caching purposes
predict_using_flip : {bool}
Generate predictions by using a flipped version of the data
## Returns:
A list of predictions in COCO format and corresponding image IDs
"""
@lru_cache(maxsize=50)
def _full_list_of_predictions(self, gen, model_sub_dir, epoch, predict_using_flip):
list_of_predictions = []
image_ids = []
gen_length = len(gen)
for i in range(gen_length):
X_batch, _, metadata_batch = gen[i]
# X_batch has dimensions (batch, x, y, channels)
# If predict_using_flip, run both original and flipped image through and average the predictions
# Typically increases accuracy by a few percent
predicted_heatmaps_batch = self.eval.predict_heatmaps(X_batch=X_batch, predict_using_flip=predict_using_flip)
imgs, predictions = self.eval.heatmap_to_COCO_format(predicted_heatmaps_batch, metadata_batch)
list_of_predictions += predictions
image_ids += imgs
util.print_progress_bar(1.0*i/gen_length, label=f"Batch {i}/{gen_length}")
# Flush any leftover progress bar to 100%
util.print_progress_bar(1, label=f"Batch {gen_length}/{gen_length}")
print()
return image_ids, list_of_predictions
def _get_generator(self, genEnum):
if genEnum == Generator.representative_set_gen:
gen = self.representative_set_gen
elif genEnum == Generator.val_gen:
gen = self.val_gen
else:
gen = None
return gen