-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinomialQueue.cpp
299 lines (261 loc) · 9.21 KB
/
BinomialQueue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include "BinomialQueue.h"
#include "dsexceptions.h"
static const int MAX_TREES = 14;
/**
* Construct the binomial queue.
*/
template <class Comparable>
BinomialQueue<Comparable>::BinomialQueue( ) : theTrees( MAX_TREES )
{
for( int i = 0; i < theTrees.size( ); i++ )
theTrees[ i ] = NULL;
currentSize = 0;
}
/**
* Copy constructor is left as an exercise.
*/
template <class Comparable>
BinomialQueue<Comparable>::
BinomialQueue( const BinomialQueue<Comparable> & rhs )
{
cout << "Copy constructor is unimplemented" << endl;
}
/**
* Destroy the binomial queue.
*/
template <class Comparable>
BinomialQueue<Comparable>::~BinomialQueue( )
{
makeEmpty( );
}
/**
* Merge rhs into the priority queue.
* rhs becomes empty. rhs must be different from this.
* Throw Overflow if result exceeds capacity.
*/
template <class Comparable>
void BinomialQueue<Comparable>::merge( BinomialQueue<Comparable> & rhs )
{
if( this == &rhs ) // Avoid aliasing problems
return;
if( currentSize + rhs.currentSize > capacity( ) )
throw Overflow( );
currentSize += rhs.currentSize;
BinomialNode<Comparable> *carry = NULL;
for( int i = 0, j = 1; j <= currentSize; i++, j *= 2 )
{
BinomialNode<Comparable> *t1 = theTrees[ i ];
BinomialNode<Comparable> *t2 = rhs.theTrees[ i ];
int whichCase = t1 == NULL ? 0 : 1;
whichCase += t2 == NULL ? 0 : 2;
whichCase += carry == NULL ? 0 : 4;
switch( whichCase )
{
case 0: /* No trees */
case 1: /* Only this */
break;
case 2: /* Only rhs */
theTrees[ i ] = t2;
rhs.theTrees[ i ] = NULL;
break;
case 4: /* Only carry */
theTrees[ i ] = carry;
carry = NULL;
break;
case 3: /* this and rhs */
carry = combineTrees( t1, t2 );
theTrees[ i ] = rhs.theTrees[ i ] = NULL;
break;
case 5: /* this and carry */
carry = combineTrees( t1, carry );
theTrees[ i ] = NULL;
break;
case 6: /* rhs and carry */
carry = combineTrees( t2, carry );
rhs.theTrees[ i ] = NULL;
break;
case 7: /* All three */
theTrees[ i ] = carry;
carry = combineTrees( t1, t2 );
rhs.theTrees[ i ] = NULL;
break;
}
}
for( int k = 0; k < rhs.theTrees.size( ); k++ )
rhs.theTrees[ k ] = NULL;
rhs.currentSize = 0;
}
/**
* Return the result of merging equal-sized t1 and t2.
*/
template <class Comparable>
BinomialNode<Comparable> *
BinomialQueue<Comparable>::combineTrees( BinomialNode<Comparable> *t1,
BinomialNode<Comparable> *t2 ) const
{
if( t2->element < t1->element )
return combineTrees( t2, t1 );
t2->nextSibling = t1->leftChild;
t1->leftChild = t2;
return t1;
}
/**
* Insert item x into the priority queue, maintaining heap order.
* This implementation is not optimized for O(1) performance.
* Throw Overflow if capacity exceeded.
*/
template <class Comparable>
void BinomialQueue<Comparable>::insert( const Comparable & x )
{
BinomialQueue oneItem;
oneItem.currentSize = 1;
oneItem.theTrees[ 0 ] = new BinomialNode<Comparable>( x, NULL, NULL );
merge( oneItem );
}
/**
* Return the smallest item in the priority queue.
* Throw Underflow if empty.
*/
template <class Comparable>
const Comparable & BinomialQueue<Comparable>::findMin( ) const
{
if( isEmpty( ) )
throw Underflow( );
return theTrees[ findMinIndex( ) ]->element;
}
/**
* Find index of tree containing the smallest item in the priority queue.
* The priority queue must not be empty.
* Return the index of tree containing the smallest item.
*/
template <class Comparable>
int BinomialQueue<Comparable>::findMinIndex( ) const
{
int i;
int minIndex;
for( i = 0; theTrees[ i ] == NULL; i++ )
;
for( minIndex = i; i < theTrees.size( ); i++ )
if( theTrees[ i ] != NULL &&
theTrees[ i ]->element < theTrees[ minIndex ]->element )
minIndex = i;
return minIndex;
}
/**
* Remove the smallest item from the priority queue.
* Throw Underflow if empty.
*/
template <class Comparable>
void BinomialQueue<Comparable>::deleteMin( )
{
Comparable x;
deleteMin( x );
}
/**
* Remove the smallest item from the priority queue, and
* copy it into minItem. Throw Underflow if empty.
*/
template <class Comparable>
void BinomialQueue<Comparable>::deleteMin( Comparable & minItem )
{
if( isEmpty( ) )
throw Underflow( );
int minIndex = findMinIndex( );
minItem = theTrees[ minIndex ]->element;
BinomialNode<Comparable> *oldRoot = theTrees[ minIndex ];
BinomialNode<Comparable> *deletedTree = oldRoot->leftChild;
delete oldRoot;
BinomialQueue deletedQueue;
deletedQueue.currentSize = ( 1 << minIndex ) - 1;
for( int j = minIndex - 1; j >= 0; j-- )
{
deletedQueue.theTrees[ j ] = deletedTree;
deletedTree = deletedTree->nextSibling;
deletedQueue.theTrees[ j ]->nextSibling = NULL;
}
theTrees[ minIndex ] = NULL;
currentSize -= deletedQueue.currentSize + 1;
merge( deletedQueue );
}
/**
* Test if the priority queue is logically empty.
* Return true if empty, false otherwise.
*/
template <class Comparable>
bool BinomialQueue<Comparable>::isEmpty( ) const
{
return currentSize == 0;
}
/**
* Test if the priority queue is logically full.
* Return true if full, false otherwise.
*/
template <class Comparable>
bool BinomialQueue<Comparable>::isFull( ) const
{
return currentSize == capacity( );
}
/**
* Make the priority queue logically empty.
*/
template <class Comparable>
void BinomialQueue<Comparable>::makeEmpty( )
{
currentSize = 0;
for( int i = 0; i < theTrees.size( ); i++ )
makeEmpty( theTrees[ i ] );
}
/**
* Deep copy.
*/
template <class Comparable>
const BinomialQueue<Comparable> &
BinomialQueue<Comparable>::
operator=( const BinomialQueue<Comparable> & rhs )
{
if( this != &rhs )
{
makeEmpty( );
theTrees.resize( rhs.theTrees.size( ) ); // Just in case
for( int i = 0; i < rhs.theTrees.size( ); i++ )
theTrees[ i ] = clone( rhs.theTrees[ i ] );
currentSize = rhs.currentSize;
}
return *this;
}
/**
* Return the capacity.
*/
template <class Comparable>
int BinomialQueue<Comparable>::capacity( ) const
{
return ( 1 << theTrees.size( ) ) - 1;
}
/**
* Make a binomial tree logically empty, and free memory.
*/
template <class Comparable>
void BinomialQueue<Comparable>::
makeEmpty( BinomialNode<Comparable> * & t ) const
{
if( t != NULL )
{
makeEmpty( t->leftChild );
makeEmpty( t->nextSibling );
delete t;
t = NULL;
}
}
/**
* Internal method to clone subtree.
*/
template <class Comparable>
BinomialNode<Comparable> *
BinomialQueue<Comparable>::clone( BinomialNode<Comparable> * t ) const
{
if( t == NULL )
return NULL;
else
return new BinomialNode<Comparable>( t->element,
clone( t->leftChild ), clone( t->nextSibling ) );
}