-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFig10_46.cpp
69 lines (62 loc) · 2.46 KB
/
Fig10_46.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <iostream.h>
#include <limits.h>
#include "matrix.h"
/* START: Fig10_46.txt */
const long INFINITY = LONG_MAX;
/**
* Compute optimal ordering of matrix multiplication.
* c contains the number of columns for each of the n matrices.
* c[ 0 ] is the number of rows in matrix 1.
* The minimum number of multiplications is left in m[ 1 ][ n ].
* Actual ordering is computed via another procedure using lastChange.
* m and lastChange are indexed starting at 1, instead of 0.
* Note: Entries below main diagonals of m and lastChange
* are meaningless and uninitialized.
*/
void optMatrix( const vector<int> & c,
matrix<long> & m, matrix<int> & lastChange )
{
int n = c.size( ) - 1;
for( int left = 1; left <= n; left++ )
m[ left ][ left ] = 0;
for( int k = 1; k < n; k++ ) // k is right - left
for( int left = 1; left <= n - k; left++ )
{
// For each position
int right = left + k;
m[ left ][ right ] = INFINITY;
for( int i = left; i < right; i++ )
{
long thisCost = m[ left ][ i ] + m[ i + 1 ][ right ]
+ c[ left - 1 ] * c[ i ] * c[ right ];
if( thisCost < m[ left ][ right ] ) // Update min
{
m[ left ][ right ] = thisCost;
lastChange[ left ][ right ] = i;
}
}
}
}
/* END */
int main( )
{
vector<int> c( 5 );
c[ 0 ] = 50; c[ 1 ] = 10; c[ 2 ] = 40; c[ 3 ] = 30; c[ 4 ] = 5;
matrix<long> m( 5, 5 );
matrix<int>lastChange( 5, 5 );
optMatrix( c, m, lastChange );
int i;
for( i = 1; i < m.numrows( ); i++ )
{
for( int j = 1; j < m.numcols( ); j++ )
cout << m[ i ][ j ] << " ";
cout << endl;
}
for( i = 1; i < lastChange.numrows( ); i++ )
{
for( int j = 1; j < lastChange.numcols( ); j++ )
cout << lastChange[ i ][ j ] << " ";
cout << endl;
}
return 0;
}