forked from Learning-and-Intelligent-Systems/stacking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactions.py
237 lines (196 loc) · 9.68 KB
/
actions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import copy
import numpy as np
from operator import itemgetter
import pybullet as p
from base_class import ActionBase
from block_utils import Environment, World, Object, Position, Pose, \
Quaternion, Dimensions, Color, \
rotation_group, get_com_ranges, \
ZERO_POS, ZERO_ROT
from filter_utils import create_uniform_particles, make_platform_world
def plan_action(belief, k=1, exp_type='reduce_var', action_type='push'):
""" Given a set of particles, choose the action that maximizes the observed variance.
:param particle_block: A list of the current set of particles instantiated as blocks.
:param k: Number of pushes to do for each orientation.
"""
if action_type == 'push':
if exp_type == 'reduce_var':
print('Finding variance reducing push action')
results = []
for rot in rotation_group():
for _ in range(k):
action = PushAction(rot=rot, timesteps=50, block=belief.block)
# create a bunch of blocks with the same geometry where each COM
# for each block is set to one of the particles
particle_blocks = [copy.deepcopy(belief.block) for particle in belief.particles.particles]
for (com, particle_block) in zip(belief.particles.particles, particle_blocks):
particle_block.com = com
particle_worlds = [make_platform_world(pb, action) for pb in particle_blocks]
env = Environment(particle_worlds, vis_sim=False)
# get the the position of the block to set the start position of the push action
# action.set_push_start_pos(particle_worlds[0].get_pose(particle_worlds[0].objects[1]).pos)
for _ in range(50):
env.step(action=action)
# Get end pose of all particle blocks.
poses = np.array([w.get_pose(w.objects[1]).pos for w in particle_worlds])
var = np.var(poses, axis=0)
score = np.mean(var)
print(var, score)
results.append((action, score))
env.disconnect()
env.cleanup()
return max(results, key=itemgetter(1))[0]
else:
print('Finding random push action')
rs = [r for r in rotation_group()]
ix = np.random.choice(np.arange(len(rs)))
rot = rs[ix]
push_action = PushAction(rot=rot, block=belief.block)
return push_action
else:
if exp_type == 'reduce_var':
print('Finding variance reducing place action')
results = []
for rot in rotation_group():
for _ in range(k):
action = PlaceAction(rot=rot, pos=None, block=belief.block)
# create a bunch of blocks with the same geometry where each COM
# for each block is set to one of the particles
particle_blocks = [copy.deepcopy(belief.block) for particle in belief.particles.particles]
for (com, particle_block) in zip(belief.particles.particles, particle_blocks):
particle_block.com = com
particle_worlds = [make_platform_world(pb, action) for pb in particle_blocks]
env = Environment(particle_worlds, vis_sim=False)
# get the the position of the block to set the start position of the push action
# action.set_push_start_pos(particle_worlds[0].get_pose(particle_worlds[0].objects[1]).pos)
for _ in range(50):
env.step(action=action)
# Get end pose of all particle blocks.
poses = np.array([w.get_pose(w.objects[1]).pos for w in particle_worlds])
var = np.var(poses, axis=0)
score = np.max(var)
cov = np.cov(poses, rowvar=False)
w, v = np.linalg.eig(cov)
#print(w)
score = np.max(w)
#print(var, score)
results.append((action, score))
env.disconnect()
env.cleanup()
return max(results, key=itemgetter(1))[0]
else:
print('Finding random place action')
# pick a random rotation
rs = [r for r in rotation_group()]
ix = np.random.choice(np.arange(len(rs)))
rot = rs[ix]
# construct the corresponding place action
place_action = PlaceAction(rot=rot, pos=None, block=belief.block)
return place_action
class PushAction(ActionBase):
def __init__(self, direction=None, timesteps=50, rot=None, delta=0.005, block=None):
""" PushAction moves the hand in the given world by a fixed distance
every timestep. We assume we will push the block in a direction through
the object's geometric center.
:param world: The world which this action should apply to. Used to get the hand
and calculate offsets.
:param direction: A unit vector direction to push.
:param timesteps: The number of timesteps to execute the action for.
:param delta: How far to move each timestep.
"""
super(PushAction, self).__init__(T=timesteps)
self.rot = rot
self.timesteps = timesteps
self.delta = delta
self.tx = 0
if direction is None:
self.direction = self.get_random_dir()
else:
self.direction = direction
_, _, block_height = np.abs(rot.apply(block.dimensions))
table, leg = Object.platform()
platform_height = table.dimensions.z + leg.dimensions.z
self.push_start_pos = Position(x=0 - self.direction[0]*self.delta*20,
y=0 - self.direction[1]*self.delta*20,
z=platform_height + block_height/2 \
- self.direction[2]*self.delta*20)
def step(self):
""" Move the hand forward by delta.
:return: The position of the hand in a local world frame.
"""
t = self.tx
if t > self.timesteps:
t = self.timesteps
push_pos = Position(x=self.push_start_pos.x + t*self.delta*self.direction[0],
y=self.push_start_pos.y + t*self.delta*self.direction[1],
z=self.push_start_pos.z + t*self.delta*self.direction[2])
self.tx += 1
return push_pos
def get_random_dir(self):
angle = np.random.uniform(0, np.pi)
return (np.cos(angle), np.sin(angle), 0)
class PlaceAction(ActionBase):
def __init__(self, pos=None, rot=None, block=None):
""" place_action simply specifies the desired intial block position
"""
super(PlaceAction, self).__init__()
if pos is None:
pos = self.get_random_pos(rot, block)
self.pos = pos
self.rot = rot
def get_random_pos(self, rot, block):
""" Sample a random offset from a single corner of the platform.
:param rot: The rotation the block will be placed with.
:param block: Used to get the dimensions of the block to place.
"""
# rotate the block by that rotation to get the dimensions in x,y
new_dims = np.abs(rot.apply(block.dimensions))
# and sample a position within the block to place on the corner of the platform
place_pos = new_dims*(np.random.rand(3) - 0.5)
table, _ = Object.platform()
x, y, _ = place_pos + np.array(table.dimensions)/2
return Position(x, y, 0)
"""
Test the specified action by creating a test world and performing a random action.
We also test here the the same action is applied across all particle worlds.
"""
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--action-type', choices=['push', 'place'], required=True)
parser.add_argument('--agent-type', choices=['teleport', 'panda'], required=True)
args = parser.parse_args()
# Create the block.
true_com = Position(x=0., y=0., z=0.)
block = Object(name='block',
dimensions=Dimensions(x=0.05, y=0.1, z=0.05),
mass=1,
com=true_com,
color=Color(r=1., g=0., b=0.))
# Test the action for all rotations.
for r in rotation_group():
# Create the action.
if args.action_type == 'push':
action = PushAction(direction=None,
timesteps=50,
rot=r,
block=block)
elif args.action_type == 'place':
action = PlaceAction(pos=None,
rot=r)
else:
raise NotImplementedError()
# Make worlds for each block and test using different CoMs.
true_world = make_platform_world(block, action)
com_ranges = get_com_ranges(true_world.objects[1])
com_particles, _ = create_uniform_particles(10, 3, com_ranges)
particle_blocks = []
for com in com_particles:
particle_block = copy.deepcopy(block)
particle_block.com = com
particle_blocks.append(particle_block)
particle_worlds = [make_platform_world(pb, action) for pb in particle_blocks]
env = Environment([true_world]+particle_worlds, vis_sim=True)
for ix in range(100):
env.step(action=action)
p.disconnect()