-
Notifications
You must be signed in to change notification settings - Fork 2
/
gram_g.v
91 lines (76 loc) · 3.92 KB
/
gram_g.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(* Contribution to the Coq Library V6.3 (July 1999) *)
(****************************************************************************)
(* The Calculus of Inductive Constructions *)
(* *)
(* Projet Coq *)
(* *)
(* INRIA ENS-CNRS *)
(* Rocquencourt Lyon *)
(* *)
(* Coq V5.10 *)
(* Nov 25th 1994 *)
(* *)
(****************************************************************************)
(* gram_g.v *)
(****************************************************************************)
(* Formal Language Theory *)
(* *)
(* Judicael Courant - Jean-Christophe Filliatre *)
(* *)
(* Developped in V5.8 June-July 1993 *)
(* Ported to V5.10 October 1994 *)
(****************************************************************************)
Require Import Ensf.
Require Import Words.
Require Import fonctions.
Require Import Relations.
Require Import gram.
Inductive Deriveg (X R : Ensf) : Word -> Word -> Prop :=
| Deriveg1 :
forall (u v : Word) (A : Elt),
dans (couple A (word u)) R -> Deriveg X R (cons A v) (Append u v)
| Deriveg2 :
forall (u v : Word) (x : Elt),
dans x X -> Deriveg X R u v -> Deriveg X R (cons x u) (cons x v).
Hint Resolve Deriveg1.
Hint Resolve Deriveg2.
Definition Derivegstar (X R : Ensf) := Rstar Word (Deriveg X R).
Lemma Deriveg_Derive :
forall (X R : Ensf) (u v : Word), Deriveg X R u v -> Derive R u v.
intros X R u v Der_g.
elim Der_g.
intros.
apply Derive1; auto.
intros.
apply Derive2; auto.
Qed.
Lemma Derivegstar_Derivestar :
forall (X R : Ensf) (u v : Word), Derivegstar X R u v -> Derivestar R u v.
unfold Derivegstar, Rstar, Derivestar in |- *.
intros X R x y Derivegstar_x_y.
pattern x, y in |- *.
apply Derivegstar_x_y.
intro. apply Rstar_reflexive.
intros u v w Der Der_star.
apply Rstar_R with v.
apply Deriveg_Derive with X; assumption.
assumption.
Qed.
Axiom
Derivestar_Derivegstar :
forall (X R : Ensf) (u v : Word), Derivestar R u v -> Derivegstar X R u v.
Hint Resolve Derivestar_Derivegstar.