forked from maxbbraun/trump2cash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
318 lines (254 loc) · 10.4 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
from datetime import datetime
from tqdm import tqdm
from analysis import Analysis
from trading import Trading
from twitter import Twitter
# TODO: Consider going back further, e.g. 621669173534584833.
# The first tweet ID to include.
SINCE_TWEET_ID = "806134244384899072"
# The initial amount in dollars for the fund simulation.
FUND_DOLLARS = 100000
# The fee in dollars per trade (https://www.tradeking.com/rates).
TRADE_FEE = 4.95
def format_ratio(ratio):
"""Converts a ratio to a readable percentage gain."""
return "%.3f%%" % (100 * (ratio - 1))
def format_dollar(amount):
"""Converts a dollar amount into a readable string."""
return "${:,.2f}".format(amount)
def format_timestamp(timestamp, weekday=False):
"""Converts a timestamp into a readable string."""
date_format = "%-m/%-d/%Y %-I:%M %p"
if weekday:
date_format += " (%A)"
return timestamp.strftime(date_format)
def get_ratio(strategy):
"""Calculates the profit ratio of a strategy."""
price_at = strategy["price_at"]
price_eod = strategy["price_eod"]
if price_at and price_eod:
action = strategy["action"]
if action == "bull":
return price_eod / price_at
elif action == "bear":
return price_at / price_eod
else:
return 1.0
else:
return 1.0
def get_sentiment_emoji(sentiment):
"""Returns an emoji representing the sentiment score."""
if sentiment == 0:
return ":neutral_face:"
elif sentiment > 0:
return ":thumbsup:"
else: # sentiment < 0:
return ":thumbsdown:"
def get_market_status(timestamp):
"""Tries to infer the market status from a timestamp."""
if not trading.is_trading_day(timestamp):
return "closed"
# Calculate the market hours for the given day. These are the same for NYSE
# and NASDAQ and include TradeKing's extended hours.
pre_time = timestamp.replace(hour=8)
open_time = timestamp.replace(hour=9, minute=30)
close_time = timestamp.replace(hour=16)
after_time = timestamp.replace(hour=17)
# Return the market status for each bucket.
if timestamp >= pre_time and timestamp < open_time:
return "pre"
elif timestamp >= open_time and timestamp < close_time:
return "open"
elif timestamp >= close_time and timestamp < after_time:
return "after"
else:
return "closed"
# TODO: Refactor trading so this logic can live there.
def should_trade(strategy, date, previous_trade_date):
"""Determines whether a trade is happening for the strategy."""
# We invest the whole value, so we can only trade once a day.
if (previous_trade_date and
previous_trade_date.replace(hour=0, minute=0, second=0) ==
date.replace(hour=0, minute=0, second=0)):
return False
# The strategy needs to be active.
if strategy["action"] == "hold":
return False
# We need to know the stock price.
if not strategy["price_at"] or not strategy["price_eod"]:
return False
return True
if __name__ == "__main__":
analysis = Analysis(logs_to_cloud=False)
trading = Trading(logs_to_cloud=False)
twitter = Twitter(logs_to_cloud=False)
# Look up the metadata for the tweets.
tweets = twitter.get_tweets(SINCE_TWEET_ID)
events = []
for tweet in tqdm(tweets):
event = {}
timestamp_str = tweet["created_at"]
timestamp = trading.utc_to_market_time(datetime.strptime(
timestamp_str, "%a %b %d %H:%M:%S +0000 %Y"))
text = twitter.get_tweet_text(tweet)
event["timestamp"] = timestamp
event["text"] = text
event["link"] = twitter.get_tweet_link(tweet)
# Extract the companies.
companies = analysis.find_companies(tweet)
strategies = []
for company in companies:
# What would have been the strategy?
market_status = get_market_status(timestamp)
strategy = trading.get_strategy(company, market_status)
# What was the price at tweet and at EOD?
price = trading.get_historical_prices(
company["ticker"], timestamp)
if price:
strategy["price_at"] = price["at"]
strategy["price_eod"] = price["eod"]
else:
strategy["price_at"] = None
strategy["price_eod"] = None
strategies.append(strategy)
event["strategies"] = strategies
events.append(event)
# Make sure the events are ordered by ascending timestatmp.
events = sorted(events, key=lambda event: event["timestamp"])
# Print out the formatted benchmark results as markdown.
print("## Benchmark Report")
print()
print("This breakdown of the analysis results and market performance vali"
"dates the current implementation against historical data.")
print()
print("Use this command to regenerate the benchmark report after changes "
"to the algorithm or data:")
print("```shell")
print("$ ./benchmark.py > benchmark.md")
print("```")
print()
print("### Events overview")
print()
print("Here's each tweet with the results of its analysis and individual "
"market performance.")
for event in events:
strategies = event["strategies"]
if strategies:
timestamp = format_timestamp(event["timestamp"], weekday=True)
print()
print("##### [%s](%s)" % (timestamp, event["link"]))
print()
lines = ["> %s" % line for line in event["text"].split("\n")]
print("\n\n".join(lines))
print()
print("*Strategy*")
print()
print("Company | Root | Sentiment | Strategy | Reason")
print("--------|------|-----------|----------|-------")
for strategy in strategies:
root = "-" if "root" not in strategy else strategy["root"]
sentiment = strategy["sentiment"]
sentiment_emoji = get_sentiment_emoji(sentiment)
print("%s | %s | %s %s | %s | %s" % (
strategy["name"],
root,
sentiment,
sentiment_emoji,
strategy["action"],
strategy["reason"]))
print()
print("*Performance*")
print()
print("Ticker | Exchange | Price @ tweet | Price @ close | Gain")
print("-------|----------|---------------|---------------|-----")
for strategy in strategies:
price_at = strategy["price_at"]
price_eod = strategy["price_eod"]
if price_at and price_eod:
price_at_str = format_dollar(price_at)
price_eod_str = format_dollar(price_eod)
else:
price_at_str = "-"
price_eod_str = "-"
ratio = get_ratio(strategy)
gain = format_ratio(ratio)
print("%s | %s | %s | %s | %s" % (
strategy["ticker"],
strategy["exchange"],
price_at_str,
price_eod_str,
gain))
print()
print("### Fund simulation")
print()
print(("This is how an initial investment of %s would have grown, includin"
"g fees of 2 \u00d7 %s per pair of orders. Bold means that the data"
" was used to trade.") % (
format_dollar(FUND_DOLLARS), format_dollar(TRADE_FEE)))
print()
print("Time | Trade | Gain | Value | Return | Annualized")
print("-----|-------|------|-------|--------|-----------")
start_date = events[0]["timestamp"]
value = FUND_DOLLARS
print("*Initial* | - | - | *%s* | - | -" % format_dollar(value))
previous_trade_date = None
for event in events:
date = event["timestamp"]
strategies = event["strategies"]
# Figure out what to spend on each trade.
num_actionable_strategies = sum(
[1 for strategy in strategies if should_trade(
strategy, date, previous_trade_date)])
budget = trading.get_budget(value, num_actionable_strategies)
trade = False
for strategy in strategies:
trade = should_trade(strategy, date, previous_trade_date)
price_at = strategy["price_at"]
price_eod = strategy["price_eod"]
if trade:
# Use the price at tweet to determine stock quantity.
quantity = int(budget // price_at)
if quantity:
# Pay the fees for both trades.
value -= 2 * TRADE_FEE
# Calculate the returns depending on the strategy.
if strategy["action"] == "bull":
value -= quantity * price_at # Buy
value += quantity * price_eod # Sell
elif strategy["action"] == "bear":
value += quantity * price_at # Short
value -= quantity * price_eod # Cover
else:
# Not enough budget to buy even one share.
trade = False
else:
quantity = 0
total_ratio = value / FUND_DOLLARS
total_return = format_ratio(total_ratio)
if date != start_date:
days = (date - start_date).days
if days > 0:
annualized_ratio = pow(total_ratio, 365.0 / days)
else:
annualized_ratio = 1
annualized_return = format_ratio(annualized_ratio)
else:
annualized_return = "-"
date_str = format_timestamp(date)
trade_str = "%s %s" % (
strategy["ticker"],
get_sentiment_emoji(strategy["sentiment"]))
ratio = get_ratio(strategy)
gain = format_ratio(ratio)
if trade:
date_str = "**%s**" % date_str
trade_str = "**%s**" % trade_str
print("%s | %s | %s | %s | %s | %s" % (
date_str,
trade_str,
gain,
format_dollar(value),
total_return,
annualized_return))
if trade:
previous_trade_date = date