-
Notifications
You must be signed in to change notification settings - Fork 0
/
api.py
326 lines (279 loc) · 13.5 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import warnings
from typing import List, OrderedDict, Tuple, Union
import numpy as np
import tensorrt as trt
warnings.filterwarnings(action='ignore', category=DeprecationWarning)
def trtweight(weights: np.ndarray) -> trt.Weights:
weights = weights.astype(weights.dtype.name)
return trt.Weights(weights)
def get_width(x: int, gw: float, divisor: int = 8) -> int:
return int(np.ceil(x * gw / divisor) * divisor)
def get_depth(x: int, gd: float) -> int:
return max(int(round(x * gd)), 1)
def Conv2d(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, out_channel: int, ksize: int, stride: int,
group: int, layer_name: str) -> trt.ILayer:
padding = ksize // 2
conv_w = trtweight(weights[layer_name + '.weight'])
conv_b = trtweight(weights[layer_name + '.bias'])
conv = network.add_convolution_nd(input,
num_output_maps=out_channel,
kernel_shape=trt.DimsHW(ksize, ksize),
kernel=conv_w,
bias=conv_b)
assert conv, 'Add convolution_nd layer failed'
conv.stride_nd = trt.DimsHW(stride, stride)
conv.padding_nd = trt.DimsHW(padding, padding)
conv.num_groups = group
return conv
def Conv(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, out_channel: int, ksize: int, stride: int,
group: int, layer_name: str) -> trt.ILayer:
padding = ksize // 2
if ksize > 3:
padding -= 1
conv_w = trtweight(weights[layer_name + '.conv.weight'])
conv_b = trtweight(weights[layer_name + '.conv.bias'])
conv = network.add_convolution_nd(input,
num_output_maps=out_channel,
kernel_shape=trt.DimsHW(ksize, ksize),
kernel=conv_w,
bias=conv_b)
assert conv, 'Add convolution_nd layer failed'
conv.stride_nd = trt.DimsHW(stride, stride)
conv.padding_nd = trt.DimsHW(padding, padding)
conv.num_groups = group
sigmoid = network.add_activation(conv.get_output(0),
trt.ActivationType.SIGMOID)
assert sigmoid, 'Add activation layer failed'
dot_product = network.add_elementwise(conv.get_output(0),
sigmoid.get_output(0),
trt.ElementWiseOperation.PROD)
assert dot_product, 'Add elementwise layer failed'
return dot_product
def Bottleneck(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, c1: int, c2: int, shortcut: bool,
group: int, scale: float, layer_name: str) -> trt.ILayer:
c_ = int(c2 * scale)
conv1 = Conv(network, weights, input, c_, 3, 1, 1, layer_name + '.cv1')
conv2 = Conv(network, weights, conv1.get_output(0), c2, 3, 1, group,
layer_name + '.cv2')
if shortcut and c1 == c2:
ew = network.add_elementwise(input,
conv2.get_output(0),
op=trt.ElementWiseOperation.SUM)
assert ew, 'Add elementwise layer failed'
return ew
return conv2
def C2f(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, cout: int, n: int, shortcut: bool, group: int,
scale: float, layer_name: str) -> trt.ILayer:
c_ = int(cout * scale) # e:expand param
conv1 = Conv(network, weights, input, 2 * c_, 1, 1, 1, layer_name + '.cv1')
y1 = conv1.get_output(0)
b, _, h, w = y1.shape
slice = network.add_slice(y1, (0, c_, 0, 0), (b, c_, h, w), (1, 1, 1, 1))
assert slice, 'Add slice layer failed'
y2 = slice.get_output(0)
input_tensors = [y1]
for i in range(n):
b = Bottleneck(network, weights, y2, c_, c_, shortcut, group, 1.0,
layer_name + '.m.' + str(i))
y2 = b.get_output(0)
input_tensors.append(y2)
cat = network.add_concatenation(input_tensors)
assert cat, 'Add concatenation layer failed'
conv2 = Conv(network, weights, cat.get_output(0), cout, 1, 1, 1,
layer_name + '.cv2')
return conv2
def SPPF(network: trt.INetworkDefinition, weights: OrderedDict,
input: trt.ITensor, c1: int, c2: int, ksize: int,
layer_name: str) -> trt.ILayer:
c_ = c1 // 2
conv1 = Conv(network, weights, input, c_, 1, 1, 1, layer_name + '.cv1')
pool1 = network.add_pooling_nd(conv1.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool1, 'Add pooling_nd layer failed'
pool1.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool1.stride_nd = trt.DimsHW(1, 1)
pool2 = network.add_pooling_nd(pool1.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool2, 'Add pooling_nd layer failed'
pool2.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool2.stride_nd = trt.DimsHW(1, 1)
pool3 = network.add_pooling_nd(pool2.get_output(0), trt.PoolingType.MAX,
trt.DimsHW(ksize, ksize))
assert pool3, 'Add pooling_nd layer failed'
pool3.padding_nd = trt.DimsHW(ksize // 2, ksize // 2)
pool3.stride_nd = trt.DimsHW(1, 1)
input_tensors = [
conv1.get_output(0),
pool1.get_output(0),
pool2.get_output(0),
pool3.get_output(0)
]
cat = network.add_concatenation(input_tensors)
assert cat, 'Add concatenation layer failed'
conv2 = Conv(network, weights, cat.get_output(0), c2, 1, 1, 1,
layer_name + '.cv2')
return conv2
def Detect(
network: trt.INetworkDefinition,
weights: OrderedDict,
input: Union[List, Tuple],
s: Union[List, Tuple],
layer_name: str,
reg_max: int = 16,
fp16: bool = True,
iou: float = 0.65,
conf: float = 0.25,
topk: int = 100,
) -> trt.ILayer:
bboxes_branch = []
scores_branch = []
anchors = []
strides = []
for i, (inp, stride) in enumerate(zip(input, s)):
h, w = inp.shape[2:]
sx = np.arange(0, w).astype(np.float16 if fp16 else np.float32) + 0.5
sy = np.arange(0, h).astype(np.float16 if fp16 else np.float32) + 0.5
sy, sx = np.meshgrid(sy, sx)
a = np.ascontiguousarray(np.stack((sy, sx), -1).reshape(-1, 2))
anchors.append(a)
strides.append(
np.full((1, h * w),
stride,
dtype=np.float16 if fp16 else np.float32))
c2 = weights[f'{layer_name}.cv2.{i}.0.conv.weight'].shape[0]
c3 = weights[f'{layer_name}.cv3.{i}.0.conv.weight'].shape[0]
nc = weights[f'{layer_name}.cv3.0.2.weight'].shape[0]
reg_max_x4 = weights[layer_name + f'.cv2.{i}.2.weight'].shape[0]
assert reg_max_x4 == reg_max * 4
b_Conv_0 = Conv(network, weights, inp, c2, 3, 1, 1,
layer_name + f'.cv2.{i}.0')
b_Conv_1 = Conv(network, weights, b_Conv_0.get_output(0), c2, 3, 1, 1,
layer_name + f'.cv2.{i}.1')
b_Conv_2 = Conv2d(network, weights, b_Conv_1.get_output(0), reg_max_x4,
1, 1, 1, layer_name + f'.cv2.{i}.2')
b_out = b_Conv_2.get_output(0)
b_shape = network.add_constant([
4,
], np.array(b_out.shape[0:1] + (4, reg_max, -1), dtype=np.int32))
assert b_shape, 'Add constant layer failed'
b_shuffle = network.add_shuffle(b_out)
assert b_shuffle, 'Add shuffle layer failed'
b_shuffle.set_input(1, b_shape.get_output(0))
b_shuffle.second_transpose = (0, 3, 1, 2)
bboxes_branch.append(b_shuffle.get_output(0))
s_Conv_0 = Conv(network, weights, inp, c3, 3, 1, 1,
layer_name + f'.cv3.{i}.0')
s_Conv_1 = Conv(network, weights, s_Conv_0.get_output(0), c3, 3, 1, 1,
layer_name + f'.cv3.{i}.1')
s_Conv_2 = Conv2d(network, weights, s_Conv_1.get_output(0), nc, 1, 1,
1, layer_name + f'.cv3.{i}.2')
s_out = s_Conv_2.get_output(0)
s_shape = network.add_constant([
3,
], np.array(s_out.shape[0:2] + (-1, ), dtype=np.int32))
assert s_shape, 'Add constant layer failed'
s_shuffle = network.add_shuffle(s_out)
assert s_shuffle, 'Add shuffle layer failed'
s_shuffle.set_input(1, s_shape.get_output(0))
s_shuffle.second_transpose = (0, 2, 1)
scores_branch.append(s_shuffle.get_output(0))
Cat_bboxes = network.add_concatenation(bboxes_branch)
assert Cat_bboxes, 'Add concatenation layer failed'
Cat_scores = network.add_concatenation(scores_branch)
assert Cat_scores, 'Add concatenation layer failed'
Cat_scores.axis = 1
Softmax = network.add_softmax(Cat_bboxes.get_output(0))
assert Softmax, 'Add softmax layer failed'
Softmax.axes = 1 << 3
SCORES = network.add_activation(Cat_scores.get_output(0),
trt.ActivationType.SIGMOID)
assert SCORES, 'Add activation layer failed'
reg_max = np.arange(
0, reg_max).astype(np.float16 if fp16 else np.float32).reshape(
(1, 1, -1, 1))
constant = network.add_constant(reg_max.shape, reg_max)
assert constant, 'Add constant layer failed'
Matmul = network.add_matrix_multiply(Softmax.get_output(0),
trt.MatrixOperation.NONE,
constant.get_output(0),
trt.MatrixOperation.NONE)
assert Matmul, 'Add matrix_multiply layer failed'
pre_bboxes = network.add_gather(
Matmul.get_output(0),
network.add_constant([
1,
], np.array([0], dtype=np.int32)).get_output(0), 3)
assert pre_bboxes, 'Add gather layer failed'
pre_bboxes.num_elementwise_dims = 1
pre_bboxes_tensor = pre_bboxes.get_output(0)
b, c, _ = pre_bboxes_tensor.shape
slice_x1y1 = network.add_slice(pre_bboxes_tensor, (0, 0, 0), (b, c, 2),
(1, 1, 1))
assert slice_x1y1, 'Add slice layer failed'
slice_x2y2 = network.add_slice(pre_bboxes_tensor, (0, 0, 2), (b, c, 2),
(1, 1, 1))
assert slice_x2y2, 'Add slice layer failed'
anchors = np.concatenate(anchors, 0)[np.newaxis]
anchors = network.add_constant(anchors.shape, anchors)
assert anchors, 'Add constant layer failed'
strides = np.concatenate(strides, 1)[..., np.newaxis]
strides = network.add_constant(strides.shape, strides)
assert strides, 'Add constant layer failed'
Sub = network.add_elementwise(anchors.get_output(0),
slice_x1y1.get_output(0),
trt.ElementWiseOperation.SUB)
assert Sub, 'Add elementwise layer failed'
Add = network.add_elementwise(anchors.get_output(0),
slice_x2y2.get_output(0),
trt.ElementWiseOperation.SUM)
assert Add, 'Add elementwise layer failed'
x1y1 = Sub.get_output(0)
x2y2 = Add.get_output(0)
Cat_bboxes_ = network.add_concatenation([x1y1, x2y2])
assert Cat_bboxes_, 'Add concatenation layer failed'
Cat_bboxes_.axis = 2
BBOXES = network.add_elementwise(Cat_bboxes_.get_output(0),
strides.get_output(0),
trt.ElementWiseOperation.PROD)
assert BBOXES, 'Add elementwise layer failed'
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'EfficientNMS_TRT', '1')
assert plugin_creator, 'Plugin EfficientNMS_TRT is not registried'
background_class = trt.PluginField('background_class',
np.array(-1, np.int32),
trt.PluginFieldType.INT32)
box_coding = trt.PluginField('box_coding', np.array(0, np.int32),
trt.PluginFieldType.INT32)
iou_threshold = trt.PluginField('iou_threshold',
np.array(iou, dtype=np.float32),
trt.PluginFieldType.FLOAT32)
max_output_boxes = trt.PluginField('max_output_boxes',
np.array(topk, np.int32),
trt.PluginFieldType.INT32)
plugin_version = trt.PluginField('plugin_version', np.array('1'),
trt.PluginFieldType.CHAR)
score_activation = trt.PluginField('score_activation',
np.array(0, np.int32),
trt.PluginFieldType.INT32)
score_threshold = trt.PluginField('score_threshold',
np.array(conf, dtype=np.float32),
trt.PluginFieldType.FLOAT32)
batched_nms_op = plugin_creator.create_plugin(
name='batched_nms',
field_collection=trt.PluginFieldCollection([
background_class, box_coding, iou_threshold, max_output_boxes,
plugin_version, score_activation, score_threshold
]))
batched_nms = network.add_plugin_v2(
inputs=[BBOXES.get_output(0),
SCORES.get_output(0)],
plugin=batched_nms_op)
batched_nms.get_output(0).name = 'num_dets'
batched_nms.get_output(1).name = 'bboxes'
batched_nms.get_output(2).name = 'scores'
batched_nms.get_output(3).name = 'labels'
return batched_nms