-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_generic.py
299 lines (264 loc) · 14.5 KB
/
train_generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
import torchvision
import torch.nn as nn
import os
import glob
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
import torch.nn.functional as F
import argparse
from tqdm import tqdm
import numpy as np
from torch.autograd import Variable
import random
rand_seed = 22
if rand_seed is not None:
random.seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
#torch.backends.cudnn.benchmark = False
#torch.backends.cudnn.deterministic = True
from modeling import *
from dataset import *
from utils.functions import *
from utils.losses import *
from utils import pytorch_ssim
from datasets.crowd import Crowd
from losses.bay_loss import Bay_Loss
from losses.post_prob import Post_Prob
def cal_mse(est,gt,args):
return torch.mean((est - gt)**2)
def cal_loss(output, target, args):
if args.loss == 'mse+lc':
loss = cal_mse(output, target, args) + 1e2 * cal_lc_loss(output, target) * args.downsample
elif args.loss == 'ssim':
ssim_loss = pytorch_ssim.SSIM(window_size=11)
loss = 1 - ssim_loss(output, target)
elif args.loss == 'mse+ssim':
ssim_loss = pytorch_ssim.SSIM(window_size=11)
loss = cal_mse(output, target, args) + (1 - ssim_loss(output,target))
elif args.loss == 'lsa+lsc':
loss = cal_spatial_abstraction_loss(output, target) + cal_spatial_correlation_loss(output, target)
elif args.loss == 'lsa':
loss = cal_spatial_abstraction_loss(output, target)
elif args.loss == 'dms-ssim':
loss = cal_dms_ssim_loss(output, target, dilations=[1,2,3,6,9])
elif args.loss == 'ms-ssim':
loss = cal_ms_ssim(output, target)
elif 'avg-ms-ssim' in args.loss:
level = int(args.loss[0])
loss = cal_avg_ms_ssim(output, target, level)
elif 'bayes' in args.loss:
points, target, st_sizes, post_prob, bayes_criterion = target
st_sizes = st_sizes.cuda()
points = [p.cuda() for p in points]
target = [t.cuda() for t in target]
prob_list = post_prob(points, st_sizes)
loss = bayes_criterion(prob_list, target, output)
elif args.loss == 'mse+mae':
loss = cal_mse(output, target, args) + 2 * torch.mean(torch.abs(output - target))
elif args.loss == 'mse+count':
est = output.sum()+1e-2
gt = target.sum()+1e-2
loss = cal_mse(output, target, args) + 1e-5 * torch.abs(1 - est/gt)
else:
loss = cal_mse(output, target, args)
return loss
def main(args):
# use gpu
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
cur_device = torch.device('cuda:{}'.format(args.gpu))
if 'bayes' in args.loss:
if args.dataset=='sha':
root = '/home/datamining/Datasets/CrowdCounting/sha_bayes_512/'
train_path = root+'train/'
test_path = root+'test/'
elif args.dataset =='qnrf':
root = '/home/datamining/Datasets/CrowdCounting/UCF-Train-Val-Test/'
train_path = root+'train/'
test_path = root+'test/'
train_loader, test_loader, train_img_paths, test_img_paths = get_loader(train_path, test_path, args)
else:
train_loader, test_loader = get_loader_json(args)
downsample_ratio = args.downsample
model_dict = {'U_VGG':U_VGG, 'MARNet':MARNet}
model_name = args.model
dataset_name = args.dataset
if args.model in ['U_VGG', 'MARNet']:
net = model_dict[model_name](downsample=args.downsample, objective=args.objective)
else:
net = model_dict[model_name]()
net.cuda()
if args.bn>0:
save_name = '{}_{}_s{}_{}_lr{}'.format(model_name, dataset_name, str(args.crop_scale), args.loss, args.lr)
else:
save_name = '{}_d{}{}_{}_{}{}_{}{}{}{}{}'.format(model_name, str(args.downsample), '_vp' if args.val_patch else '', dataset_name, args.crop_mode, '_cr'+str(args.crop_scale) if args.crop_mode!='one' else '', args.loss, '_v'+str(int(args.value_factor)) if args.value_factor!=1 else '', '_amp'+str(args.amp_k) if args.objective=='dmp+amp' else '', '_bg' if args.use_bg and 'bayes' in args.loss else '', '_lsn'+str(args.loss_n) if args.loss_n>1 else '')
save_path = "ckpt/"+save_name+".pth"
logger = get_logger('logs/'+save_name+'.txt')
for k, v in args.__dict__.items(): # save args
logger.info("{}: {}".format(k, v))
if os.path.exists(args.resume) and args.resume:
net.load_state_dict(torch.load(args.resume))
print('{} loaded!'.format(args.resume))
value_factor=args.value_factor
freq = args.print_freq
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.decay)
elif args.optimizer == 'SGD':
# sometimes not converage
optimizer=torch.optim.SGD(net.parameters(),lr=args.lr, momentum=0.95, weight_decay=args.decay)
if args.loss=='bayes+':
bayes_criterion = Bay_Loss(True, cur_device)
post_prob = Post_Prob(sigma=8, c_size=args.crop_scale, stride=1, background_ratio=0.1, use_background=True, device=cur_device)
else:
mse_criterion = nn.MSELoss().cuda()
mae_critetion = nn.L1Loss().cuda()
if args.scheduler == 'plt':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,mode='min',factor=0.8,patience=30, verbose=True)
elif args.scheduler == 'cos':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer,T_max=50,eta_min=0)
elif args.scheduler == 'step':
scheduler = lr_scheduler.StepLR(optimizer,step_size=50, gamma=0.5)
elif args.scheduler == 'exp':
scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.99)
elif args.scheduler == 'cyclic' and args.optimizer == 'SGD':
scheduler = lr_scheduler.CyclicLR(optimizer, base_lr=args.lr*0.01, max_lr=args.lr, step_size_up=25,)
elif args.scheduler == 'None':
scheduler = None
else:
print('scheduler name error!')
if args.resume == 0:
mae, rmse =1e6, 1e6
elif args.val_patch:
mae, rmse = val_patch(net, test_loader, value_factor)
elif 'bayes' in args.loss:
mae, rmse = val_bayes(net, test_loader, value_factor)
else:
mae, rmse = val(net, test_loader, value_factor)
best_mae, best_rmse = mae, rmse
for epoch in range(args.epochs):
train_loss = 0.0
if 'bayes' in args.loss:
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
net.train()
for it, data in enumerate(train_loader):
if 'bayes' in args.loss:
#inputs, points, targets, st_sizes=data
inputs, target = data[0], data[1:]
img = inputs.to(cur_device)
amp_gt = target[-1].cuda()
target = [t for t in target[:-1]] + [post_prob, bayes_criterion]
else:
img, target, _, amp_gt = data
img = img.cuda()
target = value_factor * target.float().unsqueeze(1).cuda()
amp_gt = amp_gt.cuda()
#print(img.shape)
optimizer.zero_grad()
#print(target.shape)
if args.model in ['U_VGG', ]:
if args.objective =='dmp+amp':
output, d0, d1, d2, d3, d4, amp = net(img)
else:
output, d0, d1, d2, d3, d4 = net(img)
elif args.model == 'MARNet':
output, d0, d1, d2, d3, d4, amp41, amp31, amp21, amp11, amp01 = net(img)
elif args.objective == 'dmp+amp':
output, amp = net(img)
else:
output = net(img)
loss = cal_loss(output, target, args)
if args.loss_n>=2:
loss += cal_loss(d0, target, args)
if args.loss_n>=3:
loss += cal_loss(d1, target, args)
if args.loss_n>=4:
loss += cal_loss(d2, target, args)
if args.loss_n>=5:
loss += cal_loss(d3, target, args)
if args.loss_n>=6:
loss += cal_loss(d4, target, args)
if args.loss_n>=7:
loss += cal_loss(d5, target, args)
# add the cross entropy loss for attention map
if args.objective == 'dmp+amp':
if args.model == 'MARNet':
for amp in [amp41, amp31, amp21, amp11, amp01]:
amp_gt_us = amp_gt.unsqueeze(0)
if amp_gt_us.shape[2:]!=amp.shape[2:]:
amp_gt_us = F.interpolate(amp_gt_us, amp.shape[2:], mode='bilinear')
cross_entropy = (amp_gt_us * torch.log(amp+1e-10) + (1 - amp_gt_us) * torch.log(1 - amp+1e-10)) * -1
cross_entropy_loss = torch.mean(cross_entropy)
loss = loss + cross_entropy_loss * args.amp_k
else:
cross_entropy = (amp_gt * torch.log(amp+1e-10) + (1 - amp_gt) * torch.log(1 - amp+1e-10)) * -1
cross_entropy_loss = torch.mean(cross_entropy)
loss = loss + cross_entropy_loss * args.amp_k
loss.backward()
optimizer.step()
data_loss = loss.item()
train_loss += data_loss
if 'bayes' in args.loss:
N = inputs.size(0)
pre_count = torch.sum(output.view(N, -1), dim=1).detach().cpu().numpy()
points = target[0]
gd_count = np.array([len(p) for p in points], dtype=np.float32)
res = pre_count - gd_count
epoch_mse.update(np.mean(res * res), N)
epoch_mae.update(np.mean(abs(res)), N)
if it%freq==0:
if 'bayes' in args.loss:
print('[ep:{}], [it:{}], [loss:{:.4f}], pre_count:{:.1f}, gt_count:{:.1f}'.format(epoch+1, it, data_loss, pre_count[0], gd_count[0]))
else:
print('[ep:{}], [it:{}], [loss:{:.8f}], [output:{:.2f}, target:{:.2f}]'.format(epoch+1, it, data_loss, output[0].sum().item(), target[0].sum().item()))
if (args.lazy_val and epoch > 0.5 * args.epochs) or (args.lazy_val and epoch < 0.5 * args.epochs and epoch % 5 == 0) or args.lazy_val < 1:
if args.val_patch:
mae, rmse = val_patch(net, test_loader, value_factor)
elif 'bayes' in args.loss:
mae, rmse = val_bayes(net, test_loader, value_factor)
else:
mae, rmse = val(net, test_loader, value_factor)
if mae + 0.1 * rmse < best_mae + 0.1 * best_rmse:
best_mae, best_rmse = mae, rmse
torch.save(net.state_dict(), save_path)
if not (args.warm_up and epoch < args.warm_up_steps):
if args.scheduler == 'plt':
scheduler.step(train_loss/len(train_loader))
elif args.scheduler != 'None':
scheduler.step()
if 'bayes' in args.loss:
logger.info('{} Epoch {}/{} Loss:{:.4f},lr:{:.7f}, [Train]{:.1f}, {:.1f}, [VAL]:{mae:.1f}, {rmse:.1f}, [Best]:{b_mae:.1f}, {b_rmse:.1f}'.format(model_name, epoch+1, args.epochs, train_loss/len(train_loader), optimizer.param_groups[0]['lr'], epoch_mae.get_avg(), np.sqrt(epoch_mse.get_avg()), mae=mae, rmse=rmse, b_mae=best_mae, b_rmse=best_rmse))
else:
logger.info('{} Epoch {}/{} Loss:{:.6f}, lr:{:.7f}, [CUR]:{mae:.1f}, {rmse:.1f}, [Best]:{b_mae:.1f}, {b_rmse:.1f}'.format(model_name, epoch+1, args.epochs, train_loss/len(train_loader), optimizer.param_groups[0]['lr'], mae=mae, rmse=rmse, b_mae=best_mae, b_rmse=best_rmse))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Crowd Counting')
parser.add_argument('--model', metavar='model name', default='MARNet', choices=[ 'U_VGG', 'MARNet'], type=str)
parser.add_argument('--downsample', metavar='downsample ratio', default=1, choices=[1, 2, 4, 8], type=int)
parser.add_argument('--dataset', metavar='dataset name', default='sha', choices=['sha','shb','qnrf', ], type=str)
parser.add_argument('--resume', metavar='resume model if exists', default='', type=str)
parser.add_argument('--lr', type=float, default=1e-5, help='the initial learning rate')
parser.add_argument('--gpu', default='0', help='assign device')
parser.add_argument('--scheduler', default='step', help='lr scheduler', choices=['plt', 'cos', 'step', 'cyclic', 'exp', 'None'], type=str)
parser.add_argument('--optimizer', default='Adam', help='optimizer', choices=['Adam','SGD'], type=str)
parser.add_argument('--decay', default=1e-4, help='weight decay', type=float)
parser.add_argument('--epochs', default=300, type=int)
parser.add_argument('--lazy_val', default=1, type=int)
parser.add_argument('--print_freq', default=50, type=int)
parser.add_argument('--train_json', metavar='TRAIN', type=str, default='json/sha_train.json', help='path to train json')
parser.add_argument('--val_json', metavar='VAL', type=str, default='json/sha_val.json', help='path to val json')
parser.add_argument('--loss', default='3avg-ms-ssim', choices=['mse','mse+lc','ssim','mse+ssim','lsa+lsc','lsa','dms-ssim', 'ms-ssim','bayes+', '2avg-ms-ssim', '3avg-ms-ssim', '4avg-ms-ssim', '5avg-ms-ssim', 'mse+mae', 'mse+count'])
parser.add_argument('--val_patch', metavar='val on patch if set to True', default=0, choices=[0,1], type=int)
parser.add_argument('--crop_mode', default='random', choices=['random', 'one', 'fixed',], type=str)
parser.add_argument('--crop_scale', metavar='patch scale, crop size = size*scale when scale<1, crop size=(scale, scale) when scale>1', default=0.5, type=float)
parser.add_argument('--value_factor', default=50.0, metavar='value factor * gt', type=float)
parser.add_argument('--objective', default='dmp+amp', choices=['dmp', 'dmp+amp'], type=str)
parser.add_argument('--amp_k', default=0.1, help="only work when objective is 'dmp+amp'. loss = loss + k * cross_entropy_loss", type=float)
parser.add_argument('--bn', default=0, help='if using batch normalization', type=int)
parser.add_argument('--bs', default=1, help='batch size if using bn', type=int)
parser.add_argument('--random_crop_n', default=1, metavar='random crop number for each image, only work when using bn', type=int)
parser.add_argument('--loss_n', default=6, help='loss count', type=int)
args = parser.parse_args()
main(args)