forked from iamtpb/SPOJ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cattleb.cpp
76 lines (76 loc) · 2.2 KB
/
cattleb.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// 2010-11-13
/*
ID: !woburn1
PROG: cattleb
LANG: C++
*/
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cassert>
using namespace std;
int main()
{
int N,R,dx,dy,vx,vy,DX,DY,VX,VY,i,cnt=0,best=0,e;
static bool inrange[100000]={0};
long long a,b,c,d; //d potentially overflows int; making a,b,c long long as well simplifies the code
double t1,t2;
static pair<double,int> A[200000];
scanf("%d %d %d %d %d %d",&N,&R,&dx,&dy,&vx,&vy);
//N = # of cows; R = radius; (dx,dy) = initial position; (vx,vy) = initial velocity
for (i=0,e=0; i<N; i++) //e = # of "events"
{
scanf("%d %d %d %d",&DX,&DY,&VX,&VY);
//(DX,DY) = initial position; (VX,VY) = initial velocity
//now: "transform" these coordinates so that Bessie is still at (0,0)
//no acceleration; use Galilean transformation equations
//fairly intuitive
DX-=dx; DY-=dy; VX-=vx; VY-=vy;
//at time t: bruiser i is at position (DX+tVX,DY+tVY) (t>=0)
//squared distance from origin = (DX+tVX)^2 + (DY+tVY)^2
//when does it equal R^2?
//DX^2 + t^2 VX^2 + 2DXtVX + DY^2 + t^2 VY^2 + 2DYtVY = R^2
//t^2 (VX^2 + VY^2) + t (2DXVX + 2DYVY) + (DX^2 + DY^2 - R^2) = 0
a=VX*VX+VY*VY; // ||v||
b=2*(DX*VX+DY*VY); // 2(d·v)
c=DX*DX+DY*DY-R*R; // ||d||-R^2;
d=b*b-4*a*c; // discriminant of quadratic
//if a = 0, then the bruiser doesn't move
//this messes up the quadratic formula; but the bruiser stays stationary relative to Bessie
//if d < 0, then crossing from within range to outside range or vice versa doesn't occur
if (a==0||d<0)
{
if (c<=0) //within range
cnt++;
continue;
}
//otherwise: a!=0 and d>=0
t1=max((-b-sqrt(d))/(2.0*a),0.0);
t2=(-b+sqrt(d))/(2.0*a);
//enters range at t1; exits at t2
if (t2>=0.0) //in range for some point (t>=0)
{
if (e>=200000) throw;
A[e++]=make_pair(t1,i);
if (e>=200000) throw;
A[e++]=make_pair(t2,i);
}
//otherwise: within range only for t < 0
//note: if t1 is negative and t2 isn't, then the bruiser is already within range at t=0; hence max(root,0)
}
best=cnt;
sort(A,A+e);
for (i=0; i<e; i++)
{
if (inrange[A[i].second])
cnt--;
else
{
inrange[A[i].second]=true;
cnt++;
best=max(cnt,best);
}
}
printf("%d\n",best);
return 0;
}