-
Notifications
You must be signed in to change notification settings - Fork 528
/
slam_gmapping.cpp
804 lines (678 loc) · 27.9 KB
/
slam_gmapping.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/*
* slam_gmapping
* Copyright (c) 2008, Willow Garage, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of Stanford University or Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/* Author: Brian Gerkey */
/* Modified by: Charles DuHadway */
/**
@mainpage slam_gmapping
@htmlinclude manifest.html
@b slam_gmapping is a wrapper around the GMapping SLAM library. It reads laser
scans and odometry and computes a map. This map can be
written to a file using e.g.
"rosrun map_server map_saver static_map:=dynamic_map"
<hr>
@section topic ROS topics
Subscribes to (name/type):
- @b "scan"/<a href="../../sensor_msgs/html/classstd__msgs_1_1LaserScan.html">sensor_msgs/LaserScan</a> : data from a laser range scanner
- @b "/tf": odometry from the robot
Publishes to (name/type):
- @b "/tf"/tf/tfMessage: position relative to the map
@section services
- @b "~dynamic_map" : returns the map
@section parameters ROS parameters
Reads the following parameters from the parameter server
Parameters used by our GMapping wrapper:
- @b "~throttle_scans": @b [int] throw away every nth laser scan
- @b "~base_frame": @b [string] the tf frame_id to use for the robot base pose
- @b "~map_frame": @b [string] the tf frame_id where the robot pose on the map is published
- @b "~odom_frame": @b [string] the tf frame_id from which odometry is read
- @b "~map_update_interval": @b [double] time in seconds between two recalculations of the map
Parameters used by GMapping itself:
Laser Parameters:
- @b "~/maxRange" @b [double] maximum range of the laser scans. Rays beyond this range get discarded completely. (default: maximum laser range minus 1 cm, as received in the the first LaserScan message)
- @b "~/maxUrange" @b [double] maximum range of the laser scanner that is used for map building (default: same as maxRange)
- @b "~/sigma" @b [double] standard deviation for the scan matching process (cell)
- @b "~/kernelSize" @b [int] search window for the scan matching process
- @b "~/lstep" @b [double] initial search step for scan matching (linear)
- @b "~/astep" @b [double] initial search step for scan matching (angular)
- @b "~/iterations" @b [int] number of refinement steps in the scan matching. The final "precision" for the match is lstep*2^(-iterations) or astep*2^(-iterations), respectively.
- @b "~/lsigma" @b [double] standard deviation for the scan matching process (single laser beam)
- @b "~/ogain" @b [double] gain for smoothing the likelihood
- @b "~/lskip" @b [int] take only every (n+1)th laser ray for computing a match (0 = take all rays)
- @b "~/minimumScore" @b [double] minimum score for considering the outcome of the scanmatching good. Can avoid 'jumping' pose estimates in large open spaces when using laser scanners with limited range (e.g. 5m). (0 = default. Scores go up to 600+, try 50 for example when experiencing 'jumping' estimate issues)
Motion Model Parameters (all standard deviations of a gaussian noise model)
- @b "~/srr" @b [double] linear noise component (x and y)
- @b "~/stt" @b [double] angular noise component (theta)
- @b "~/srt" @b [double] linear -> angular noise component
- @b "~/str" @b [double] angular -> linear noise component
Others:
- @b "~/linearUpdate" @b [double] the robot only processes new measurements if the robot has moved at least this many meters
- @b "~/angularUpdate" @b [double] the robot only processes new measurements if the robot has turned at least this many rads
- @b "~/resampleThreshold" @b [double] threshold at which the particles get resampled. Higher means more frequent resampling.
- @b "~/particles" @b [int] (fixed) number of particles. Each particle represents a possible trajectory that the robot has traveled
Likelihood sampling (used in scan matching)
- @b "~/llsamplerange" @b [double] linear range
- @b "~/lasamplerange" @b [double] linear step size
- @b "~/llsamplestep" @b [double] linear range
- @b "~/lasamplestep" @b [double] angular step size
Initial map dimensions and resolution:
- @b "~/xmin" @b [double] minimum x position in the map [m]
- @b "~/ymin" @b [double] minimum y position in the map [m]
- @b "~/xmax" @b [double] maximum x position in the map [m]
- @b "~/ymax" @b [double] maximum y position in the map [m]
- @b "~/delta" @b [double] size of one pixel [m]
*/
#include "slam_gmapping.h"
#include <iostream>
#include <time.h>
#include "ros/ros.h"
#include "ros/console.h"
#include "nav_msgs/MapMetaData.h"
#include "gmapping/sensor/sensor_range/rangesensor.h"
#include "gmapping/sensor/sensor_odometry/odometrysensor.h"
#include <rosbag/bag.h>
#include <rosbag/view.h>
#include <boost/foreach.hpp>
#define foreach BOOST_FOREACH
// compute linear index for given map coords
#define MAP_IDX(sx, i, j) ((sx) * (j) + (i))
SlamGMapping::SlamGMapping():
map_to_odom_(tf::Transform(tf::createQuaternionFromRPY( 0, 0, 0 ), tf::Point(0, 0, 0 ))),
laser_count_(0), private_nh_("~"), scan_filter_sub_(NULL), scan_filter_(NULL), transform_thread_(NULL)
{
seed_ = time(NULL);
init();
}
SlamGMapping::SlamGMapping(ros::NodeHandle& nh, ros::NodeHandle& pnh):
map_to_odom_(tf::Transform(tf::createQuaternionFromRPY( 0, 0, 0 ), tf::Point(0, 0, 0 ))),
laser_count_(0),node_(nh), private_nh_(pnh), scan_filter_sub_(NULL), scan_filter_(NULL), transform_thread_(NULL)
{
seed_ = time(NULL);
init();
}
SlamGMapping::SlamGMapping(long unsigned int seed, long unsigned int max_duration_buffer):
map_to_odom_(tf::Transform(tf::createQuaternionFromRPY( 0, 0, 0 ), tf::Point(0, 0, 0 ))),
laser_count_(0), private_nh_("~"), scan_filter_sub_(NULL), scan_filter_(NULL), transform_thread_(NULL),
seed_(seed), tf_(ros::Duration(max_duration_buffer))
{
init();
}
void SlamGMapping::init()
{
// log4cxx::Logger::getLogger(ROSCONSOLE_DEFAULT_NAME)->setLevel(ros::console::g_level_lookup[ros::console::levels::Debug]);
// The library is pretty chatty
//gsp_ = new GMapping::GridSlamProcessor(std::cerr);
gsp_ = new GMapping::GridSlamProcessor();
ROS_ASSERT(gsp_);
tfB_ = new tf::TransformBroadcaster();
ROS_ASSERT(tfB_);
gsp_laser_ = NULL;
gsp_odom_ = NULL;
got_first_scan_ = false;
got_map_ = false;
// Parameters used by our GMapping wrapper
if(!private_nh_.getParam("throttle_scans", throttle_scans_))
throttle_scans_ = 1;
if(!private_nh_.getParam("base_frame", base_frame_))
base_frame_ = "base_link";
if(!private_nh_.getParam("map_frame", map_frame_))
map_frame_ = "map";
if(!private_nh_.getParam("odom_frame", odom_frame_))
odom_frame_ = "odom";
private_nh_.param("transform_publish_period", transform_publish_period_, 0.05);
double tmp;
if(!private_nh_.getParam("map_update_interval", tmp))
tmp = 5.0;
map_update_interval_.fromSec(tmp);
// Parameters used by GMapping itself
maxUrange_ = 0.0; maxRange_ = 0.0; // preliminary default, will be set in initMapper()
if(!private_nh_.getParam("minimumScore", minimum_score_))
minimum_score_ = 0;
if(!private_nh_.getParam("sigma", sigma_))
sigma_ = 0.05;
if(!private_nh_.getParam("kernelSize", kernelSize_))
kernelSize_ = 1;
if(!private_nh_.getParam("lstep", lstep_))
lstep_ = 0.05;
if(!private_nh_.getParam("astep", astep_))
astep_ = 0.05;
if(!private_nh_.getParam("iterations", iterations_))
iterations_ = 5;
if(!private_nh_.getParam("lsigma", lsigma_))
lsigma_ = 0.075;
if(!private_nh_.getParam("ogain", ogain_))
ogain_ = 3.0;
if(!private_nh_.getParam("lskip", lskip_))
lskip_ = 0;
if(!private_nh_.getParam("srr", srr_))
srr_ = 0.1;
if(!private_nh_.getParam("srt", srt_))
srt_ = 0.2;
if(!private_nh_.getParam("str", str_))
str_ = 0.1;
if(!private_nh_.getParam("stt", stt_))
stt_ = 0.2;
if(!private_nh_.getParam("linearUpdate", linearUpdate_))
linearUpdate_ = 1.0;
if(!private_nh_.getParam("angularUpdate", angularUpdate_))
angularUpdate_ = 0.5;
if(!private_nh_.getParam("temporalUpdate", temporalUpdate_))
temporalUpdate_ = -1.0;
if(!private_nh_.getParam("resampleThreshold", resampleThreshold_))
resampleThreshold_ = 0.5;
if(!private_nh_.getParam("particles", particles_))
particles_ = 30;
if(!private_nh_.getParam("xmin", xmin_))
xmin_ = -100.0;
if(!private_nh_.getParam("ymin", ymin_))
ymin_ = -100.0;
if(!private_nh_.getParam("xmax", xmax_))
xmax_ = 100.0;
if(!private_nh_.getParam("ymax", ymax_))
ymax_ = 100.0;
if(!private_nh_.getParam("delta", delta_))
delta_ = 0.05;
if(!private_nh_.getParam("occ_thresh", occ_thresh_))
occ_thresh_ = 0.25;
if(!private_nh_.getParam("llsamplerange", llsamplerange_))
llsamplerange_ = 0.01;
if(!private_nh_.getParam("llsamplestep", llsamplestep_))
llsamplestep_ = 0.01;
if(!private_nh_.getParam("lasamplerange", lasamplerange_))
lasamplerange_ = 0.005;
if(!private_nh_.getParam("lasamplestep", lasamplestep_))
lasamplestep_ = 0.005;
if(!private_nh_.getParam("tf_delay", tf_delay_))
tf_delay_ = transform_publish_period_;
}
void SlamGMapping::startLiveSlam()
{
entropy_publisher_ = private_nh_.advertise<std_msgs::Float64>("entropy", 1, true);
sst_ = node_.advertise<nav_msgs::OccupancyGrid>("map", 1, true);
sstm_ = node_.advertise<nav_msgs::MapMetaData>("map_metadata", 1, true);
ss_ = node_.advertiseService("dynamic_map", &SlamGMapping::mapCallback, this);
scan_filter_sub_ = new message_filters::Subscriber<sensor_msgs::LaserScan>(node_, "scan", 5);
scan_filter_ = new tf::MessageFilter<sensor_msgs::LaserScan>(*scan_filter_sub_, tf_, odom_frame_, 5);
scan_filter_->registerCallback([this](auto msg){ laserCallback(msg); });
transform_thread_ = new boost::thread(boost::bind(&SlamGMapping::publishLoop, this, transform_publish_period_));
}
void SlamGMapping::startReplay(const std::string & bag_fname, std::string scan_topic)
{
double transform_publish_period;
ros::NodeHandle private_nh_("~");
entropy_publisher_ = private_nh_.advertise<std_msgs::Float64>("entropy", 1, true);
sst_ = node_.advertise<nav_msgs::OccupancyGrid>("map", 1, true);
sstm_ = node_.advertise<nav_msgs::MapMetaData>("map_metadata", 1, true);
ss_ = node_.advertiseService("dynamic_map", &SlamGMapping::mapCallback, this);
rosbag::Bag bag;
bag.open(bag_fname, rosbag::bagmode::Read);
std::vector<std::string> topics;
topics.push_back(std::string("/tf"));
topics.push_back(scan_topic);
rosbag::View viewall(bag, rosbag::TopicQuery(topics));
// Store up to 5 messages and there error message (if they cannot be processed right away)
std::queue<std::pair<sensor_msgs::LaserScan::ConstPtr, std::string> > s_queue;
foreach(rosbag::MessageInstance const m, viewall)
{
tf::tfMessage::ConstPtr cur_tf = m.instantiate<tf::tfMessage>();
if (cur_tf != NULL) {
for (size_t i = 0; i < cur_tf->transforms.size(); ++i)
{
geometry_msgs::TransformStamped transformStamped;
tf::StampedTransform stampedTf;
transformStamped = cur_tf->transforms[i];
tf::transformStampedMsgToTF(transformStamped, stampedTf);
tf_.setTransform(stampedTf);
}
}
sensor_msgs::LaserScan::ConstPtr s = m.instantiate<sensor_msgs::LaserScan>();
if (s != NULL) {
if (!(ros::Time(s->header.stamp)).is_zero())
{
s_queue.push(std::make_pair(s, ""));
}
// Just like in live processing, only process the latest 5 scans
if (s_queue.size() > 5) {
ROS_WARN_STREAM("Dropping old scan: " << s_queue.front().second);
s_queue.pop();
}
// ignoring un-timestamped tf data
}
// Only process a scan if it has tf data
while (!s_queue.empty())
{
try
{
tf::StampedTransform t;
tf_.lookupTransform(s_queue.front().first->header.frame_id, odom_frame_, s_queue.front().first->header.stamp, t);
this->laserCallback(s_queue.front().first);
s_queue.pop();
}
// If tf does not have the data yet
catch(tf2::TransformException& e)
{
// Store the error to display it if we cannot process the data after some time
s_queue.front().second = std::string(e.what());
break;
}
}
}
bag.close();
}
void SlamGMapping::publishLoop(double transform_publish_period){
if(transform_publish_period == 0)
return;
ros::Rate r(1.0 / transform_publish_period);
while(ros::ok()){
publishTransform();
r.sleep();
}
}
SlamGMapping::~SlamGMapping()
{
if(transform_thread_){
transform_thread_->join();
delete transform_thread_;
}
delete gsp_;
if(gsp_laser_)
delete gsp_laser_;
if(gsp_odom_)
delete gsp_odom_;
if (scan_filter_)
delete scan_filter_;
if (scan_filter_sub_)
delete scan_filter_sub_;
}
bool
SlamGMapping::getOdomPose(GMapping::OrientedPoint& gmap_pose, const ros::Time& t)
{
// Get the pose of the centered laser at the right time
centered_laser_pose_.stamp_ = t;
// Get the laser's pose that is centered
tf::Stamped<tf::Transform> odom_pose;
try
{
tf_.transformPose(odom_frame_, centered_laser_pose_, odom_pose);
}
catch(tf::TransformException e)
{
ROS_WARN("Failed to compute odom pose, skipping scan (%s)", e.what());
return false;
}
double yaw = tf::getYaw(odom_pose.getRotation());
gmap_pose = GMapping::OrientedPoint(odom_pose.getOrigin().x(),
odom_pose.getOrigin().y(),
yaw);
return true;
}
bool
SlamGMapping::initMapper(const sensor_msgs::LaserScan& scan)
{
laser_frame_ = scan.header.frame_id;
// Get the laser's pose, relative to base.
tf::Stamped<tf::Pose> ident;
tf::Stamped<tf::Transform> laser_pose;
ident.setIdentity();
ident.frame_id_ = laser_frame_;
ident.stamp_ = scan.header.stamp;
try
{
tf_.transformPose(base_frame_, ident, laser_pose);
}
catch(tf::TransformException e)
{
ROS_WARN("Failed to compute laser pose, aborting initialization (%s)",
e.what());
return false;
}
// create a point 1m above the laser position and transform it into the laser-frame
tf::Vector3 v;
v.setValue(0, 0, 1 + laser_pose.getOrigin().z());
tf::Stamped<tf::Vector3> up(v, scan.header.stamp,
base_frame_);
try
{
tf_.transformPoint(laser_frame_, up, up);
ROS_DEBUG("Z-Axis in sensor frame: %.3f", up.z());
}
catch(tf::TransformException& e)
{
ROS_WARN("Unable to determine orientation of laser: %s",
e.what());
return false;
}
// gmapping doesnt take roll or pitch into account. So check for correct sensor alignment.
if (fabs(fabs(up.z()) - 1) > 0.001)
{
ROS_WARN("Laser has to be mounted planar! Z-coordinate has to be 1 or -1, but gave: %.5f",
up.z());
return false;
}
gsp_laser_beam_count_ = scan.ranges.size();
double angle_center = (scan.angle_min + scan.angle_max)/2;
if (up.z() > 0)
{
do_reverse_range_ = scan.angle_min > scan.angle_max;
centered_laser_pose_ = tf::Stamped<tf::Pose>(tf::Transform(tf::createQuaternionFromRPY(0,0,angle_center),
tf::Vector3(0,0,0)), ros::Time::now(), laser_frame_);
ROS_INFO("Laser is mounted upwards.");
}
else
{
do_reverse_range_ = scan.angle_min < scan.angle_max;
centered_laser_pose_ = tf::Stamped<tf::Pose>(tf::Transform(tf::createQuaternionFromRPY(M_PI,0,-angle_center),
tf::Vector3(0,0,0)), ros::Time::now(), laser_frame_);
ROS_INFO("Laser is mounted upside down.");
}
// Compute the angles of the laser from -x to x, basically symmetric and in increasing order
laser_angles_.resize(scan.ranges.size());
// Make sure angles are started so that they are centered
double theta = - std::fabs(scan.angle_min - scan.angle_max)/2;
for(unsigned int i=0; i<scan.ranges.size(); ++i)
{
laser_angles_[i]=theta;
theta += std::fabs(scan.angle_increment);
}
ROS_DEBUG("Laser angles in laser-frame: min: %.3f max: %.3f inc: %.3f", scan.angle_min, scan.angle_max,
scan.angle_increment);
ROS_DEBUG("Laser angles in top-down centered laser-frame: min: %.3f max: %.3f inc: %.3f", laser_angles_.front(),
laser_angles_.back(), std::fabs(scan.angle_increment));
GMapping::OrientedPoint gmap_pose(0, 0, 0);
// setting maxRange and maxUrange here so we can set a reasonable default
ros::NodeHandle private_nh_("~");
if(!private_nh_.getParam("maxRange", maxRange_))
maxRange_ = scan.range_max - 0.01;
if(!private_nh_.getParam("maxUrange", maxUrange_))
maxUrange_ = maxRange_;
// The laser must be called "FLASER".
// We pass in the absolute value of the computed angle increment, on the
// assumption that GMapping requires a positive angle increment. If the
// actual increment is negative, we'll swap the order of ranges before
// feeding each scan to GMapping.
gsp_laser_ = new GMapping::RangeSensor("FLASER",
gsp_laser_beam_count_,
fabs(scan.angle_increment),
gmap_pose,
0.0,
maxRange_);
ROS_ASSERT(gsp_laser_);
GMapping::SensorMap smap;
smap.insert(make_pair(gsp_laser_->getName(), gsp_laser_));
gsp_->setSensorMap(smap);
gsp_odom_ = new GMapping::OdometrySensor(odom_frame_);
ROS_ASSERT(gsp_odom_);
/// @todo Expose setting an initial pose
GMapping::OrientedPoint initialPose;
if(!getOdomPose(initialPose, scan.header.stamp))
{
ROS_WARN("Unable to determine inital pose of laser! Starting point will be set to zero.");
initialPose = GMapping::OrientedPoint(0.0, 0.0, 0.0);
}
gsp_->setMatchingParameters(maxUrange_, maxRange_, sigma_,
kernelSize_, lstep_, astep_, iterations_,
lsigma_, ogain_, lskip_);
gsp_->setMotionModelParameters(srr_, srt_, str_, stt_);
gsp_->setUpdateDistances(linearUpdate_, angularUpdate_, resampleThreshold_);
gsp_->setUpdatePeriod(temporalUpdate_);
gsp_->setgenerateMap(false);
gsp_->GridSlamProcessor::init(particles_, xmin_, ymin_, xmax_, ymax_,
delta_, initialPose);
gsp_->setllsamplerange(llsamplerange_);
gsp_->setllsamplestep(llsamplestep_);
/// @todo Check these calls; in the gmapping gui, they use
/// llsamplestep and llsamplerange intead of lasamplestep and
/// lasamplerange. It was probably a typo, but who knows.
gsp_->setlasamplerange(lasamplerange_);
gsp_->setlasamplestep(lasamplestep_);
gsp_->setminimumScore(minimum_score_);
// Call the sampling function once to set the seed.
GMapping::sampleGaussian(1,seed_);
ROS_INFO("Initialization complete");
return true;
}
bool
SlamGMapping::addScan(const sensor_msgs::LaserScan& scan, GMapping::OrientedPoint& gmap_pose)
{
if(!getOdomPose(gmap_pose, scan.header.stamp))
return false;
if(scan.ranges.size() != gsp_laser_beam_count_)
return false;
// GMapping wants an array of doubles...
double* ranges_double = new double[scan.ranges.size()];
// If the angle increment is negative, we have to invert the order of the readings.
if (do_reverse_range_)
{
ROS_DEBUG("Inverting scan");
int num_ranges = scan.ranges.size();
for(int i=0; i < num_ranges; i++)
{
// Must filter out short readings, because the mapper won't
if(scan.ranges[num_ranges - i - 1] < scan.range_min)
ranges_double[i] = (double)scan.range_max;
else
ranges_double[i] = (double)scan.ranges[num_ranges - i - 1];
}
} else
{
for(unsigned int i=0; i < scan.ranges.size(); i++)
{
// Must filter out short readings, because the mapper won't
if(scan.ranges[i] < scan.range_min)
ranges_double[i] = (double)scan.range_max;
else
ranges_double[i] = (double)scan.ranges[i];
}
}
GMapping::RangeReading reading(scan.ranges.size(),
ranges_double,
gsp_laser_,
scan.header.stamp.toSec());
// ...but it deep copies them in RangeReading constructor, so we don't
// need to keep our array around.
delete[] ranges_double;
reading.setPose(gmap_pose);
/*
ROS_DEBUG("scanpose (%.3f): %.3f %.3f %.3f\n",
scan.header.stamp.toSec(),
gmap_pose.x,
gmap_pose.y,
gmap_pose.theta);
*/
ROS_DEBUG("processing scan");
return gsp_->processScan(reading);
}
void
SlamGMapping::laserCallback(const sensor_msgs::LaserScan::ConstPtr& scan)
{
laser_count_++;
if ((laser_count_ % throttle_scans_) != 0)
return;
static ros::Time last_map_update(0,0);
// We can't initialize the mapper until we've got the first scan
if(!got_first_scan_)
{
if(!initMapper(*scan))
return;
got_first_scan_ = true;
}
GMapping::OrientedPoint odom_pose;
if(addScan(*scan, odom_pose))
{
ROS_DEBUG("scan processed");
GMapping::OrientedPoint mpose = gsp_->getParticles()[gsp_->getBestParticleIndex()].pose;
ROS_DEBUG("new best pose: %.3f %.3f %.3f", mpose.x, mpose.y, mpose.theta);
ROS_DEBUG("odom pose: %.3f %.3f %.3f", odom_pose.x, odom_pose.y, odom_pose.theta);
ROS_DEBUG("correction: %.3f %.3f %.3f", mpose.x - odom_pose.x, mpose.y - odom_pose.y, mpose.theta - odom_pose.theta);
tf::Transform laser_to_map = tf::Transform(tf::createQuaternionFromRPY(0, 0, mpose.theta), tf::Vector3(mpose.x, mpose.y, 0.0)).inverse();
tf::Transform odom_to_laser = tf::Transform(tf::createQuaternionFromRPY(0, 0, odom_pose.theta), tf::Vector3(odom_pose.x, odom_pose.y, 0.0));
map_to_odom_mutex_.lock();
map_to_odom_ = (odom_to_laser * laser_to_map).inverse();
map_to_odom_mutex_.unlock();
if(!got_map_ || (scan->header.stamp - last_map_update) > map_update_interval_)
{
updateMap(*scan);
last_map_update = scan->header.stamp;
ROS_DEBUG("Updated the map");
}
} else
ROS_DEBUG("cannot process scan");
}
double
SlamGMapping::computePoseEntropy()
{
double weight_total=0.0;
for(std::vector<GMapping::GridSlamProcessor::Particle>::const_iterator it = gsp_->getParticles().begin();
it != gsp_->getParticles().end();
++it)
{
weight_total += it->weight;
}
double entropy = 0.0;
for(std::vector<GMapping::GridSlamProcessor::Particle>::const_iterator it = gsp_->getParticles().begin();
it != gsp_->getParticles().end();
++it)
{
if(it->weight/weight_total > 0.0)
entropy += it->weight/weight_total * log(it->weight/weight_total);
}
return -entropy;
}
void
SlamGMapping::updateMap(const sensor_msgs::LaserScan& scan)
{
ROS_DEBUG("Update map");
boost::mutex::scoped_lock map_lock (map_mutex_);
GMapping::ScanMatcher matcher;
matcher.setLaserParameters(scan.ranges.size(), &(laser_angles_[0]),
gsp_laser_->getPose());
matcher.setlaserMaxRange(maxRange_);
matcher.setusableRange(maxUrange_);
matcher.setgenerateMap(true);
GMapping::GridSlamProcessor::Particle best =
gsp_->getParticles()[gsp_->getBestParticleIndex()];
std_msgs::Float64 entropy;
entropy.data = computePoseEntropy();
if(entropy.data > 0.0)
entropy_publisher_.publish(entropy);
if(!got_map_) {
map_.map.info.resolution = delta_;
map_.map.info.origin.position.x = 0.0;
map_.map.info.origin.position.y = 0.0;
map_.map.info.origin.position.z = 0.0;
map_.map.info.origin.orientation.x = 0.0;
map_.map.info.origin.orientation.y = 0.0;
map_.map.info.origin.orientation.z = 0.0;
map_.map.info.origin.orientation.w = 1.0;
}
GMapping::Point center;
center.x=(xmin_ + xmax_) / 2.0;
center.y=(ymin_ + ymax_) / 2.0;
GMapping::ScanMatcherMap smap(center, xmin_, ymin_, xmax_, ymax_,
delta_);
ROS_DEBUG("Trajectory tree:");
for(GMapping::GridSlamProcessor::TNode* n = best.node;
n;
n = n->parent)
{
ROS_DEBUG(" %.3f %.3f %.3f",
n->pose.x,
n->pose.y,
n->pose.theta);
if(!n->reading)
{
ROS_DEBUG("Reading is NULL");
continue;
}
matcher.invalidateActiveArea();
matcher.computeActiveArea(smap, n->pose, &((*n->reading)[0]));
matcher.registerScan(smap, n->pose, &((*n->reading)[0]));
}
// the map may have expanded, so resize ros message as well
if(map_.map.info.width != (unsigned int) smap.getMapSizeX() || map_.map.info.height != (unsigned int) smap.getMapSizeY()) {
// NOTE: The results of ScanMatcherMap::getSize() are different from the parameters given to the constructor
// so we must obtain the bounding box in a different way
GMapping::Point wmin = smap.map2world(GMapping::IntPoint(0, 0));
GMapping::Point wmax = smap.map2world(GMapping::IntPoint(smap.getMapSizeX(), smap.getMapSizeY()));
xmin_ = wmin.x; ymin_ = wmin.y;
xmax_ = wmax.x; ymax_ = wmax.y;
ROS_DEBUG("map size is now %dx%d pixels (%f,%f)-(%f, %f)", smap.getMapSizeX(), smap.getMapSizeY(),
xmin_, ymin_, xmax_, ymax_);
map_.map.info.width = smap.getMapSizeX();
map_.map.info.height = smap.getMapSizeY();
map_.map.info.origin.position.x = xmin_;
map_.map.info.origin.position.y = ymin_;
map_.map.data.resize(map_.map.info.width * map_.map.info.height);
ROS_DEBUG("map origin: (%f, %f)", map_.map.info.origin.position.x, map_.map.info.origin.position.y);
}
for(int x=0; x < smap.getMapSizeX(); x++)
{
for(int y=0; y < smap.getMapSizeY(); y++)
{
/// @todo Sort out the unknown vs. free vs. obstacle thresholding
GMapping::IntPoint p(x, y);
double occ=smap.cell(p);
assert(occ <= 1.0);
if(occ < 0)
map_.map.data[MAP_IDX(map_.map.info.width, x, y)] = -1;
else if(occ > occ_thresh_)
{
//map_.map.data[MAP_IDX(map_.map.info.width, x, y)] = (int)round(occ*100.0);
map_.map.data[MAP_IDX(map_.map.info.width, x, y)] = 100;
}
else
map_.map.data[MAP_IDX(map_.map.info.width, x, y)] = 0;
}
}
got_map_ = true;
//make sure to set the header information on the map
map_.map.header.stamp = ros::Time::now();
map_.map.header.frame_id = tf_.resolve( map_frame_ );
sst_.publish(map_.map);
sstm_.publish(map_.map.info);
}
bool
SlamGMapping::mapCallback(nav_msgs::GetMap::Request &req,
nav_msgs::GetMap::Response &res)
{
boost::mutex::scoped_lock map_lock (map_mutex_);
if(got_map_ && map_.map.info.width && map_.map.info.height)
{
res = map_;
return true;
}
else
return false;
}
void SlamGMapping::publishTransform()
{
map_to_odom_mutex_.lock();
ros::Time tf_expiration = ros::Time::now() + ros::Duration(tf_delay_);
tfB_->sendTransform( tf::StampedTransform (map_to_odom_, tf_expiration, map_frame_, odom_frame_));
map_to_odom_mutex_.unlock();
}