-
Notifications
You must be signed in to change notification settings - Fork 10
/
abadia_09_mycobacterium_798572.pdf.txt
5595 lines (3390 loc) · 61.4 KB
/
abadia_09_mycobacterium_798572.pdf.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>1471-2334-9-122.fm</title>
<meta name="Author" content="hjgy"/>
<meta name="Creator" content="FrameMaker 7.1"/>
<meta name="Producer" content="Acrobat Distiller 7.0 (Windows)"/>
<meta name="CreationDate" content=""/>
</head>
<body>
<pre>
BMC Infectious Diseases
BioMed Central
Open Access
Research article
Mycobacterium tuberculosis ecology in Venezuela: epidemiologic
correlates of common spoligotypes and a large clonal cluster
defined by MIRU-VNTR-24
Edgar Abadía1, Monica Sequera3, Dagmarys Ortega4, María Victoria Méndez1,
Arnelly Escalona1, Omaira Da Mata2, Elix Izarra5, Yeimy Rojas1,
Rossana Jaspe1, Alifiya S Motiwala6, David Alland6, Jacobus de Waard2 and
Howard E Takiff*1
Address: 1Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Cientificas (IVIC), 1020A Caracas, Venezuela,
2Laboratorio de Tuberculosis, Instituto de Biomedicina, Universidad Central de Venezuela, (UCV), Caracas, Venezuela, 3UCGEI/LaBDEI,
Universidad de Carabobo, Valencia, Venezuela, 4Centro Amazónico de Investigaciones y Control de Enfermedades Tropicales (CAICET), Puerto
Ayacucho, Venezuela, 5Instituto Nacional de Estadistica, (INE), Caracas, Venezuela and 6Center for Emerging Pathogens, The University of
Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
Email: Edgar Abadía - eabadia@gmail.com; Monica Sequera - moniquita4@gmail.com; Dagmarys Ortega - dagmarys@gmail.com;
María Victoria Méndez - mvmendez@ivic.ve; Arnelly Escalona - leeuwenhoek@hotmail.com; Omaira Da Mata - odamata78@yahoo.com;
Elix Izarra - elixjosei@yahoo.es; Yeimy Rojas - yeimyrojas@hotmail.com; Rossana Jaspe - rjaspe@ivic.ve;
Alifiya S Motiwala - ghadiaah@umdnj.edu; David Alland - allandda@umdnj.edu; Jacobus de Waard - jacobusdeward@gmail.com;
Howard E Takiff* - htakiff@ivic.ve
* Corresponding author
Published: 6 August 2009
BMC Infectious Diseases 2009, 9:122
doi:10.1186/1471-2334-9-122
Received: 4 January 2009
Accepted: 6 August 2009
This article is available from: http://www.biomedcentral.com/1471-2334/9/122
© 2009 Abadía et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Background: Tuberculosis remains an endemic public health problem, but the ecology of the TB
strains prevalent, and their transmission, can vary by country and by region. We sought to
investigate the prevalence of Mycobacterium tuberculosis strains in different regions of Venezuela. A
previous study identified the most prevalent strains in Venezuela but did not show geographical
distribution nor identify clonal genotypes. To better understand local strain ecology, we used
spoligotyping to analyze 1298 M. tuberculosis strains isolated in Venezuela from 1997 to 2006,
predominantly from two large urban centers and two geographically distinct indigenous areas, and
then studied a subgroup with MIRU-VNTR 24 loci.
Results: The distribution of spoligotype families is similar to that previously reported for
Venezuela and other South American countries: LAM 53%, T 10%, Haarlem 5%, S 1.9%, X 1.2%,
Beijing 0.4%, and EAI 0.2%. The six most common shared types (SIT's 17, 93, 605, 42, 53, 20)
accounted for 49% of the isolates and were the most common in almost all regions, but only a
minority were clustered by MIRU-VNTR 24. One exception was the third most frequent overall,
SIT 605, which is the most common spoligotype in the state of Carabobo but infrequent in other
regions. MIRU-VNTR homogeneity suggests it is a clonal group of strains and was named the
"Carabobo" genotype. Epidemiologic comparisons showed that patients with SIT 17 were younger
and more likely to have had specimens positive for Acid Fast Bacilli on microscopy, and patients
with SIT 53 were older and more commonly smear negative. Female TB patients tended to be
Page 1 of 12
(page number not for citation purposes)
BMC Infectious Diseases 2009, 9:122
http://www.biomedcentral.com/1471-2334/9/122
younger than male patients. Patients from the high incidence, indigenous population in Delta
Amacuro state were younger and had a nearly equal male:female distribution.
Conclusion: Six SIT's cause nearly half of the cases of tuberculosis in Venezuela and dominate in
nearly all regions. Strains with SIT 17, the most common pattern overall may be more actively
transmitted and SIT 53 strains may be less virulent and associated with reactivation of past
infections in older patients. In contrast to other common spoligotypes, strains with SIT 605 form
a clonal group centered in the state of Carabobo.
Background
There has evolved a genre of publications describing
aspects of the molecular epidemiology of tuberculosis in
varied populations of diverse countries [1-4]. While many
of the earlier studies were coupled with epidemiologic
investigation to identify routes and risk factors for transmission [5-8], most recent publications describe strain
variation and the dynamics in the local population structure of Mycobacterium tuberculosis. While this change
reflects an increasing interest in the phylogeny of M. tuberculosis and its correlation with factors underlying the
dynamics in the tuberculosis epidemic, it is also related to
the techniques used. Where IS6110 RFLP typing distinguishes between strains [9], spoligotyping [10] and
sequence polymorphisms [11-13], are suitable for large
studies on phylogeny and identification of genotype families. The more recent technique of minisatellite analysis
[14], MIRU-VNTR 24 loci, is less technically demanding
than the IS6110 RFLP typing technique, can discriminate
at strain level, and is also promising for use in phylogenetic studies [15]. However, this technique is laborious in
its manual form, and fairly expensive when 24 loci are
analyzed with an automated sequencer [16]. As spoligotyping is a robust, cheap, and easy-to-perform technique
for large scale studies, this is a pragmatic choice, which
can be complemented by the selective use of MIRU-VNTR
analysis with 24, 15, 12 or fewer loci [17] to discriminate
genotypes within clusters of strains showing identical spoligotypes.
In Venezuela, the average national incidence of tuberculosis is moderate, approximately 34 per 100,000 http://
www.who.int/globalatlas/predefinedreports/tb/
PPDF_Files/ven.pdf. However, the incidence is two to
three times higher in some isolated Amerindian populations, likely the result of prolonged deficiencies in control
programs, although improvements over the past few years
have made strains available for this study. A recent publication described the spoligotype patterns of M. tuberculosis
strains in Venezuela based on analysis of 670 isolates collected in a nationwide drug resistance survey [18]. While
this study identified the predominant spoligotypes in the
country, it did not include epidemiologic data, nor infor-
mation on where in Venezuela each strain was obtained.
Also, because it was based on data from spoligotyping
alone, it could not discriminate clonal clusters.
The Laboratorio de Tuberculosis of the Instituto de Biomedicina and the Laboratorio de Genética Molecular at
IVIC, both in Caracas, have been working in collaboration
with the National TB Control Program and regional labs
in the Amazonas, Carabobo and other states, to implement routine cultures to improve TB diagnosis and control. The M. tuberculosis isolates described herein were
collected from 1997 through 2006, and while this group
of strains could be described as a convenience sample, it
is likely to be representative of the country as a whole. It
includes large numbers of isolates from the two biggest
cities in the center of the country – Caracas and Valencia,
as well as from two rural, largely Amerindian populations
– Delta Amacuro and Amazonas, located at widely separated geographical poles, and also a smaller number of
isolates from other regions (Figure 1 and Additional file
1). Data on strains from the Amazonas [19], Carabobo
[20], and Delta Amacuro [21] states that have been
described separately but are included here in a broader,
national analysis.
The strains were first analyzed by spoligotyping, whereafter a subgroup of strains with the most prevalent spoligotypes were further analyzed with MIRU-VNTR 24 loci
typing. We show the geographic distribution of spoligotypes, including a large, geographically centered clonal
outbreak, and associate the spoligotype results with epidemiologic parameters to suggest that particular genotypes
of M. tuberculosis are emerging in Venezuela while others
may be disappearing.
Results
Clustering Analysis of Spoligotypes
A total of 300 different spoligotype patterns were recognized among the 1298 strains subjected to analysis, of
which 201 were unique patterns, and 99 were shared with
other isolates, constituting clusters (Additional file 2).
Thirty-two clusters comprised only two cases. Of the 300
patterns, 173 were not found in SpolDB4 [10], and of
Page 2 of 12
(page number not for citation purposes)
BMC Infectious Diseases 2009, 9:122
Valencia
467 isolates
2003- 2006
http://www.biomedcentral.com/1471-2334/9/122
Maracay
9 isolates
2005
Caracas
572 isolates
1998- 2006
Sucre
54 isolates
2004- 2006
Delta
Amacuro
84 isolates
1999- 2006
Apure
12 isolates
2005- 2006
Amazonas
100 isolates
1997- 2004
Figure 1
Map of Venezuela showing the geographic origin of isolates included in the study
Map of Venezuela showing the geographic origin of isolates included in the study.
these 32 were shared and 141 were unique types. Of the
127 spoligotypes that have counterparts in SpolDB4, 9
patterns have been found exclusively in Venezuela: ST
1696, belonging to the family LAM5, 21 isolates; ST 1702,
LAM5, 10 isolates; ST 375, LAM5, 7 isolates; ST 1692, ×1,
5 isolates; ST 1698, U, 3 isolates; and one isolate each of
ST 1104, T5; 1700, T1; ST 1711 LAM2; and ST 1718, X1LAM9.
The six most common spoligotypes (Figure 3) were
Shared Types (SIT's) 17, 93, 605, 42, 53 and 20, which
together accounted for 49% of the total isolates. The single most common pattern, SIT 17, was found in 242 isolates (18.6%). The most common spoligotypes overall
were also the most common in each region, with SIT 17
being the first or second most frequently isolated in all
regions studied.
The most common spoligotype families were LAM (53%),
T (10.6%), and Haarlem (5%), but 17.9% could not be
classified (Figure 2). Using the program SPOTCLUST to
predict the most likely family, a similar distribution was
obtained for the 32 cluster spoligotypes (91 isolates) not
found in SpolDB4 (Additional file 2).
Although SIT 605 is relatively uncommon in most
regions, it was the third most common spoligotype overall because the collection includes 467 strains (36% of the
total) from the state of Carabobo, where it is the most
common pattern. It is present in SpolDB4, but the only
two strains with SIT605 described outside of Venezuela
Page 3 of 12
(page number not for citation purposes)
BMC Infectious Diseases 2009, 9:122
X 1.2%
S 1.9%
Haarlem
5.0%
Beijing 0.4%
EAI 0.2%
U 9.7%
T 10.6%
NF 17.9%
http://www.biomedcentral.com/1471-2334/9/122
LAM 53.0%
FNDS 6.9%
LAM 53.0%
NF 17.9%
T 10.6%
U 9.7%
Haarlem 5.0%
S 1.9%
X 1.2%
Beijing 0.4%
EAI 0.2%
A
EAI 3.4%
S 6.5%
Haarlem
6.9%
T 16.4%
LAM 59.9%
LAM 59.9%
T 16.4%
Haarlem 6.9%
S 6.5%
EAI 3.4%
FNDS 6.9%
B
Figure 2
Distribution of Spoligotype Families
Distribution of Spoligotype Families. A. Distribution of Venezuelan M. tuberculosis biogeographic families defined by
SpolDB4. B. Distribution of Venezuelan M. tuberculosis spoligotypes absent in SpolDB4 and identified at a family level by SPOTCLUST. NF= Not found in SpolDB4. FNDS= Family not described in SpolDB4.
were isolated in New York in patients from Colombia (Jeffrey Driscoll, Natalia Kurepina and Barry Kreiswirth, personal communication), which shares a long border with
Venezuela.
In SpolDB4, SIT 605 is not clearly assigned to a major genotype family, but the absence of spacers 21 to 24 and 33
to 36 would place it in the LAM family, even though it also
lacks spacers 31 – 32 and 37 – 40. To confirm its designation as LAM, 45 chromosomal SNPs [13] were analyzed
for 23 strains, including 4 SIT 605, 4 SIT 17 and 4 SIT 93.
SIT 605 was found to belong to SCG v-ST7, as were the SIT
17, SIT 93 strains, as well as the other 11 strains with different LAM spoligotypes (data not shown). If SIT 605 is
classified as a LAM strain, this family would account for a
total of 60.2% of the isolates in this study.
MIRU-VNTR 24 Loci Analysis
To determine the genotype similarity of strains sharing
identical spoligotype patterns, we performed MIRU-VNTR
24 loci analysis on a subgroup of strains representing the
major spoligotype clusters (Figure 4). MIRU-VNTR confirmed the spoligotyping designation in all strains. Surprisingly, while only occasional strains with SIT 17 or SIT
93 shared MIRU-VNTR 24 patterns, all SIT 605 strains
were identical for at least 21 loci, even if the strains had
been isolated at distinct geographic regions, suggesting
that SIT 605 comprises a clonal group of strains. Even the
two SIT 605 strains isolated in New York also appeared to
be part of this clone, based on previous MIRU 12 results
(Jeffrey Driscoll personal communication). We propose
naming this strain the "Carabobo" genotype. Furthermore, ST 1698, whose spoligotype pattern differs from SIT
605 by the absence of one additional spacer, was found by
MIRU-VNTR 24 to belong to the SIT 605 "Carabobo" genotype.
Correlation with Epidemiologic Parameters
Epidemiologic data was not available for all of the
patients from whom the 1298 strains had been isolated,
but for several parameters the information was recorded
for at least 25% of the 1298 patients. Overall, of those
patients with available data, the mean age was 38 years,
68% were between 15 and 45 years of age, while 29%
were over 45, and just 3% were less than 15 years old.
Sixty nine percent were men, 74% had a positive clinical
specimens, 88% had pulmonary disease, and 75% had
cavitations according to the chest X-rays (data not
shown). Venezuelans made up 93% of patients and foreign-borns just 7%. The distribution of spoligotype patterns in isolates from the foreign born population did not
appear different from that of native Venezuelan patients.
Comparisons of patients in different regions revealed that
the average patient age was similar for the two urban areas
– 39 years for Carabobo and 37.8 years for Caracas – and
36.8 years for the Amazon region (Table 1). However it
was much younger, 32.6 years, for patients from the indigenous Delta Amacuro region. Also, while males made up
about 71% of patients from Caracas, 70% from Carabobo
(69%) [20], and 64% from Amazonas [19], males comprised only 54% of the patients from Delta Amacuro [21].
Page 4 of 12
(page number not for citation purposes)
BMC Infectious Diseases 2009, 9:122
Rank
1
2
3
4
5
6
7
8
9
10
11
12
13
SIT
17
93
605
42
53
20
50
1696
34
51
376
33
47
14
4
15
16
17
64
106
1702
18
NA
19
20
21
22
23
62
960
1691
162
194
24
25
26
27
28
29
30
31
32
33
34
35
36
291
375
1694
866
1
86
150
167
334
905
1692
1905
NA
Family
LAM2
LAM5
U
LAM9
T1
LAM1
Haarlem3
LAM5
S
T1
LAM3
LAM3
Haarlem1
LAM3- S
conver
LAM6
U?
LAM5
LAM2
*0.82
Haarlem1
LAM5
LAM2
LAM9
LAM2LAM4
T1
LAM5
LAM5
LAM9
Beijing
T1
LAM9
T1
T1
U
X1
T1
T1 *1,00
http://www.biomedcentral.com/1471-2334/9/122
Spoligotype
■■□■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■□■■■■■■■□□□□■■■■■■□□□□□□□□□□■■■
■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■
■■□■■■■■■■■■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■□□□□■■■■■■■
■■■□□□■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■□□■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■□□□□
□■■■■■■■□□□■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■□□□■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■□□□□□□■□□□□■■■■■■■
Total
242
129
93
85
53
35
22
21
20
19
16
13
13
Total
%
18,6
9,9
7,2
6,5
4,1
2,7
1,7
1,6
1,5
1,5
1,2
1
1
Cs
572
44
115
50
17
42
29
19
15
3
16
14
8
6
3
Cb
467
36
65
52
70
31
12
7
3
18
3
3
6
7
10
□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■□□□□■■■■■■■
12
0,9
11
10
10
10
0,8
0,8
0,8
5
2
3
10
0,8
■■■■■■■■■■■■■■■■■■■■■■■■■□□□□□□■□□□□■■■□■■■
■□□■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■□■■■■■■■■■□■□■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■■□□□□■■□■■■■
■■□■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■□■■■
9
9
9
8
8
0,7
0,7
0,7
0,6
0,6
■■■■■■■■■■■■■■■■■■■■□■■■■■■■■■■■□□□□■■■■■■■
□□□■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
□■□■■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■□■■■■■■■■■■■■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■■□■■■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■□■■■■■□□□□■■■■■■■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□■■□□□□■■■■■■■
■□■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□□□■■■■■■■
■■□■■■■■■■■■□■■■■■■■□□□□■■■■■■□□□□□□■■■■■■■
■□□□□■■■■□□■□■■■■□■■■■■■■■■■■■■■□□□□■■■□■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■□□■■□□□□■■■■■■■
■■■■■■■■■■■■■■■■■■■■□■■■■■■■■■■■□□□□■■□■■■■
7
7
7
6
5
5
5
5
5
5
5
5
5
0,5
0,5
0,5
0,5
0,4
0,4
0,4
0,4
0,4
0,4
0,4
0,4
0,4
Su
54
4,2
7
9
4
5
1
Ap
12
0,9
3
3
Ar
9
0,7
2
1
1
1
1
1
1
1
1
1
■■□■■■■■■■■■□■■■■■■■□□□□■■■■■□□■□□□□■■■■■□□
4
9
5
1
Am
100
7,7
27
7
1
2
1
3
2
1
2
1
■■■■■■■■■■■■■■■■■■■■□□□□■■■■□■■■□□□□■■■■■■■
■■■■■■■■□□□■■■■■■■■□□□□□□□□□□□□□□□□□□□■■■■■
□□□□■■■■■■■■□■■■■■■■□□□□■■■■■■■■□□□□■■■■■■■
Da
84
6,5
23
7
1
7
2
2
9
4
2
7
5
5
5
5
3
8
8
2
5
5
2
2
6
4
2
1
1
1
5
1
3
5
1
2
4
2
3
1
3
5
5
Figure 3
Geographic Distribution of the Most Common Spoligotypes in Venezuela
Geographic Distribution of the Most Common Spoligotypes in Venezuela. Spoligotypes found in at least 5 isolates,
ranked by number of isolates, with SIT, Spoligotype family (SpoDB4), geographic distribution, and percentage of total strains
(1298). Cs = Caracas, Cb= Carabobo State, Da = Delta Amacuro State, Am = Amazonas State; Suc = Sucre State, Ap = Apure
State, and Ar = Aragua State. For spoligotypes not represented in SpolDB4, the "*" next to the family designation indicates the
probability of belonging to that family as determined by the program SPOTCLUST.
Surprisingly, female patients had significantly lower mean
ages overall, and also in Caracas and in Delta Amacuro
(Table 1).
There were no significant differences when all patients in
clusters were compared with all patients with non-clustered isolates. However, Table 2 shows that patients
whose isolates had the most common spoligotype, SIT 17,
were significantly younger compared to patients with
other spoligotype strains (mean ages 34 vs 39 years, p =
0.0008). The SIT 17 patients also had lower mean ages
when the comparisons were stratified for each of the three
regions with the most isolates, but the differences did not
quite reach statistical significance (Caracas 35 vs 38.4, p =
0.077; Carabobo 34.5 vs 39.8 p = 0.076; and Amazonas
30.6 vs 39.1, p = 0.056). In contrast, patients with SIT 53
had a significantly higher mean age compared to all other
patients (48.2 vs 37.6, p = 0.001), or compared within the
Caracas cohort (50.25 vs 37.1, p = 0.0002), the source of
most SIT 53 patients with epidemiologic data. The mean
ages for patients in the other large clusters weren't significantly different from the overall group (data not shown).
As seen in Table 3, patients with SIT 17 isolates were also
more likely to have had clinical specimens positive for
Acid Fast Bacilli (AFB) by microscopy when compared
Page 5 of 12
(page number not for citation purposes)
BMC Infectious Diseases 2009, 9:122
http://www.biomedcentral.com/1471-2334/9/122
Spoligotype
24 MIRU- VNTR
ST
spoligo+mvla
Lineage
Strain Code
4348
4156
4052
3690
3192
3171
3007
2996
2687
2531
2461
2401
2347
2165
2163b
2059
1955
1644
960
802
580
577
424
154
43
41
42
40
39
38
37
36
34
35
33
32
31
30
29
27
28
26
25
24
23
22
20
21
19
18
17
16
15
13
14
12
11
10
9
8
mvla
7
5
6
4
3
2
1
100
spoligo
90
80
70
mlv a-spoligo
2
3
4
2
4
3
3
2
2
3
2
4
2
2
5
1
5
3
2
3
3
6
2
2
.53
T1
14_0
2
2
4
2