-
Notifications
You must be signed in to change notification settings - Fork 10
/
abel_05_genomewide_793936.pdf.txt
4378 lines (3232 loc) · 109 KB
/
abel_05_genomewide_793936.pdf.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>1471-2148-5-72.fm</title>
<meta name="Author" content="csproduction"/>
<meta name="Creator" content="FrameMaker 7.0"/>
<meta name="Producer" content="Acrobat Distiller 5.0.5 (Windows)"/>
<meta name="CreationDate" content=""/>
</head>
<body>
<pre>
BMC Evolutionary Biology
BioMed Central
Open Access
Research article
Genome-wide comparative analysis of the IQD gene families in
Arabidopsis thaliana and Oryza sativa
Steffen Abel*, Tatyana Savchenko and Maggie Levy
Address: Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
Email: Steffen Abel* - sabel@ucdavis.edu; Tatyana Savchenko - savchenko@ucdavis.edu; Maggie Levy - levym@agri.huji.ac.il
* Corresponding author
Published: 20 December 2005
BMC Evolutionary Biology 2005, 5:72
doi:10.1186/1471-2148-5-72
Received: 20 July 2005
Accepted: 20 December 2005
This article is available from: http://www.biomedcentral.com/1471-2148/5/72
© 2005 Abel et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Background: Calcium signaling plays a prominent role in plants for coordinating a wide range of
developmental processes and responses to environmental cues. Stimulus-specific generation of
intracellular calcium transients, decoding of calcium signatures, and transformation of the signal into
cellular responses are integral modules of the transduction process. Several hundred proteins with
functions in calcium signaling circuits have been identified, and the number of downstream targets of
calcium sensors is expected to increase. We previously identified a novel, calmodulin-binding nuclear
protein, IQD1, which stimulates glucosinolate accumulation and plant defense in Arabidopsis thaliana. Here,
we present a comparative genome-wide analysis of a new class of putative calmodulin target proteins in
Arabidopsis and rice.
Results: We identified and analyzed 33 and 29 IQD1-like genes in Arabidopsis thaliana and Oryza sativa,
respectively. The encoded IQD proteins contain a plant-specific domain of 67 conserved amino acid
residues, referred to as the IQ67 domain, which is characterized by a unique and repetitive arrangement
of three different calmodulin recruitment motifs, known as the IQ, 1-5-10, and 1-8-14 motifs. We
demonstrated calmodulin binding for IQD20, the smallest IQD protein in Arabidopsis, which consists of
a C-terminal IQ67 domain and a short N-terminal extension. A striking feature of IQD proteins is the high
isoelectric point (~10.3) and frequency of serine residues (~11%). We compared the Arabidopsis and rice
IQD gene families in terms of gene structure, chromosome location, predicted protein properties and
motifs, phylogenetic relationships, and evolutionary history. The existence of an IQD-like gene in
bryophytes suggests that IQD proteins are an ancient family of calmodulin-binding proteins and arose
during the early evolution of land plants.
Conclusion: Comparative phylogenetic analyses indicate that the major IQD gene lineages originated
before the monocot-eudicot divergence. The extant IQD loci in Arabidopsis primarily resulted from
segmental duplication and reflect preferential retention of paralogous genes, which is characteristic for
proteins with regulatory functions. Interaction of IQD1 and IQD20 with calmodulin and the presence of
predicted calmodulin binding sites in all IQD family members suggest that IQD proteins are a new class of
calmodulin targets. The basic isoelectric point of IQD proteins and their frequently predicted nuclear
localization suggest that IQD proteins link calcium signaling pathways to the regulation of gene expression.
Our comparative genomics analysis of IQD genes and encoded proteins in two model plant species
provides the first step towards the functional dissection of this emerging family of putative calmodulin
targets.
Page 1 of 25
(page number not for citation purposes)
BMC Evolutionary Biology 2005, 5:72
Background
The low solubility product constants of calcium phosphate salts provide a chemical rationale for the evolution
of Ca2+ as a universal second messenger. The necessity to
decrease cytosolic Ca2+ concentrations to submicromolar
levels by exporting the cation into extracellular spaces or
intracellular compartments that do not generate ATP,
such as the endoplasmic reticulum or vacuole, creates a
steep concentration gradient that allows for the controlled
and gated generation of rapid Ca2+ transients in response
to extracellular stimuli. Such intracellular Ca2+ signals are
not only characterized by their magnitudes but also by
their spatial and temporal resolution. The sum of these
parameters is often referred to as the 'Ca2+ signature' of a
primary stimulus [1-4]. Numerous environmental cues of
biotic and abiotic nature and endogenous physiological
and developmental conditions trigger specific Ca2+ signatures [2,5-8]. Stimulus-specific Ca2+ oscillations are generated by voltage- and ligand-gated Ca2+-permeable
channels (influx), and by Ca2+-ATPases and antiporters
(efflux) to regain resting Ca2+ levels [3,7]. Approximately
80 genes coding for potential Ca2+ channels, pumps and
antiporters have been identified in the Arabidopsis
genome, suggesting complex generation and regulation of
stimulus-specific Ca2+ signatures [8].
Calcium spikes are recognized by several Ca2+-binding
proteins and are decoded via Ca2+-dependent conformational changes in these sensor polypeptides and interacting target proteins [6,9-11]. Several classes of Ca2+ sensors
have been identified in plants that contain a Ca2+-binding
helix-loop-helix fold known as the EF-hand motif. Calmodulin is the archetypal Ca2+ sensor, which is exceptionally conserved in eukaryotes and contains four EF-hand
motifs. About 250 EF-hand motif-containing proteins
have been identified in Arabidopsis [12], including six
typical calmodulins and 50 calmodulin-like proteins that
differ significantly in sequence and number of EF-hand
motifs [13,14]. Members of a second, plant-specific family of Ca2+ sensors, which usually contain three EF-hand
motifs, have similarity to the regulatory B-subunit of calcineurin in animals and are referred to as calcineurin Blike (CBL) proteins [9,15-17]. While calmodulins and
CBL sensor proteins have no catalytic activity on their own
and therefore are sometimes referred to as 'Ca2+ sensor
relays', a third major class of Ca2+ sensors are bifunctional
proteins, known as Ca2+-dependent protein kinases
(CDPK), which contain a calmodulin-like domain with
four EF-hand motifs and a Ca2+-dependent, Ser/Thr protein kinase domain on a single polypeptide chain [18,19].
Because of their dual functions as Ca2+-binding proteins
and catalytic effectors the CDPK proteins are considered
'Ca2+ sensor responders'. In Arabidopsis, CDPK and CBL
proteins are encoded by multigene families of 34 and 10
members, respectively [16,19]. CDPKs play essential roles
http://www.biomedcentral.com/1471-2148/5/72
in hormone and stress signaling pathways as well as in
plant responses to pathogens [20,21].
To transmit the information of the second messenger,
Ca2+ sensor relays such as calmodulins and CBL proteins
interact with target proteins and regulate their biochemical activities. During the final phase of the transduction
process, the target proteins modulate diverse cellular
activities to establish the specific response to a given extracellular signal. The CBL sensor proteins interact specifically in a Ca2+-dependent fashion with a single family of
SNF1-like Ser/Thr protein kinases, known as CBL-interacting protein kinases or CIPKs, which are encoded by 25
genes in Arabidopsis [16,22-24]. Current data indicate
that CBL-CIPK interaction networks provide a signaling
module for integrating plant responses to an array of environmental stimuli [17,23,25,26]. In contrast to CBL sensor proteins, which regulate a select set of target protein
kinases, calmodulins interact with an astonishingly large
number of target proteins. These have been extensively
reviewed and include among other functional categories,
proteins implicated in generating Ca2+ signatures,
enzymes in signaling and metabolic pathways, and transcriptional regulators [6,8,11,27-29]. The calmodulininteracting domains of target proteins are not necessarily
related in structure and exhibit high sequence variability,
which may reflect the versatility of the calmodulin sensor
relay. Nonetheless, calmodulin-interacting domains usually consist of a short (16–35 residues) basic amphiphilic
helix, which is recognized by a flexible hydrophobic
pocket that forms upon Ca2+ binding to calmodulin
[9,10,30,31]. Three calmodulin recruitment motifs are
currently known although not all functionally characterized calmodulin-binding domains contain these specific
motifs: the IQ motif (IQxxxRGxxxR; Pfam 00612) is
thought to mediate calmodulin retention in a Ca2+-independent manner, whereas Ca2+-dependent interaction can
be achieved by two related motifs, termed 1-5-10 and 1-814, which are distinguished by their spacing of bulky
hydrophobic and basic amino acid residues [31-34].
Using various biochemical approaches, about 200 target
proteins have been identified in Arabidopsis, a number
that is expected to rise [8,11].
In a genetic screen for regulatory factors of the glucosinolate homeostasis in Arabidopsis thaliana [35], we have
recently identified a gene coding for a calmodulin-binding protein with similarity to SF16 from sunflower [36].
We termed this protein IQD1 for the presence of a plantspecific domain of 67 conserved amino acids (referred to
as IQ67 domain), which is characterized by a unique and
repetitive arrangement of IQ, 1-5-10 and 1-8-14 calmodulin recruitment motifs. We demonstrated by biochemical
and genetic studies that IQD1 is a nuclear calmodulinbinding protein that stimulates glucosinolate accumula-
Page 2 of 25
(page number not for citation purposes)
BMC Evolutionary Biology 2005, 5:72
http://www.biomedcentral.com/1471-2148/5/72
Table 1: The IQD gene family of Arabidopsis thaliana
Gene
Identifier
REFSEQ
Accession
Protein ID
cDNA Accessiona Protein ID
Expressionb
Protein
Namec
Size
(aa)
Mass
(kD)
IP
Predicted_Locationd
PSORT
At1g01110
At1g14380
NM_099993
NM_101305
NP_563618
NP_563950
At1g17480
At1g18840
At1g19870
NM_101610
NM_101741
NM_101842
NP_173191
NP_173318
NP_564097
At1g51960
At1g72670
NM_104077
NM_105926
NP_175608
NP_177411
At1g74690
NM_106127
NP_177607
At2g02790
At2g26180
At2g26410
At2g33990
NM_126334
NM_128176
NM_128198
NM_128950
NP_178382
NP_180187
NP_180209
NP_180946
At2g43680
NM_180068
NP_850399
At3g09710
At3g15050
At3g16490
At3g22190
At3g49260
NM_111805
NM_112367
NM_112520
NM_113116
NM_114785
NP_187582
NP_188123
NP_188270
NP_188858
NP_566917
At3g49380
At3g51380
At3g52290
NM_114798
NM_114997
NM_115089
NP_190507
NP_190706
NP_190797
At3g59690
NM_115831
NP_191528
At4g00820
At4g10640
NM_116308
NM_117132
NP_567191
NP_192802
At4g14750
At4g23060
At4g29150
NM_117560
NM_118435
NM_119059
NP_193211
NP_194037
NP_194644
At5g03040
NM_120382
NP_568110
At5g03960
At5g07240
NM_120478
NM_120806
NP_196016
NP_196341
At5g13460
NM_121349
NP_196850
At5g35670
NM_122958
NP_568529
At5g62070
NM_125600
NP_201013
AY085363*
BT005935A
AO64870
AY702665
AY702666
BT001081A
AN46862
BT010652A
AR07516
AY128860A
AM91260
BX818988
BX840898
AU237877
AV557487
BT008408A
AP37767
AY827468
BX825987
BX824788
BT000602A
AN18171
BX838271 (FL-EST)
BT005639A
AO64059
BT001176A
AN65063
BX826435
BT010145A
AQ22614
BX827601
AY702664
BT003896A
AO41944
AY143972A
AN28911
BX829656
BT006056A
AP04041
AY128736A
AM91136
AK128736B
AD43467
AY143917A
AN28856
TargetP
ACD
ABCD
IQD18
IQD28
527
664
59.2
72.8
10.3
9.7
N
N
?
?
ACD
ABCD
ABCD
IQD7
IQD30
IQD32
370
572
794
41.0
62.7
86.8
10.5
9.2
5.2
?
N
N
?
?
C 0.65/4
ACD
IQD27
IQD8
351
414
39.3
45.9
10.1
10.3
?
N
?
?
ACD
IQD31
587
65.2
9.6
?
?
AC
CD
A
AD
IQD29
IQD6
IQD4
IQD9
636
416
527
249
69.8
46.9
58.3
28.5
9.6
10.5
10.3
10.8
N
N
?
N
C 0.71/4
?
?
?
AB
IQD14
668
74.3
11.3
?
?
ACD
BCD
AD
A
ABD
IQD1
IQD10
IQD26
IQD5
IQD21
454
259
398
400
471
50.5
29.6
48.7
44.5
52.1
10.4
10.3
10.1
10.1
10.0
N
?
?
N
N
?
C 0.91/1
?
?
AD
ABCD
IQD15
IQD20
IQD3
352
103
430
40.8
11.8
48.1
10.2
12.4
10.6
N
M
?
?
M 0.80/2
?
AD
IQD13
517
58.5
10.9
?
?
ACD
AD
IQD17
IQD16
534
423
60.0
48.7
10.3
10.1
?
N
M 0.38/5
?
ACD
ABCD
AD
IQD19
IQD22
IQD25
387
543
383
43.9
60.3
41.4
9.7
10.2
10.7
?
?
?
?
M 0.50/4
M 0.78/3
ABCD
IQD2
461
50.5
10.6
N
C 0.55/3
ACD
IQD12
IQD24
403
401
46.0
45.3
10.6
10.3
?
?
M 0.76/2
M 0.54/4
CD
IQD11
443
50.8
10.0
N
?
CD
IQD33
442
49.5
8.5
?
M 0.47/5
ACD
IQD23
403
44.3
10.5
N
C 0.51/5
?
a Full-length
cDNAs (asterisk denotes a cDNA clone that is likely 5'-truncated).
evidence for IQD gene expression provided by (A) whole-genome array [105], (B) community microarray data [94], (C) Massively
Parallel Signature Sequencing (MPSS, [106]), (D) EST clones.
c Nomenclature of IQD genes is arbitrary. Levy et al. [37] cloned IQD1 and reported closely related genes IQD2-IQD6. The designation of IQD7IQD33 is based on the phylogenetic analysis presented in Figure 1a.
d PSORT predictions: N (nucleus), C (chloroplast), M (mitochondrion). TargetP predictions: values indicate score (0.00 – 1.00) and reliability class
(1–5; best class is 1).
b Additional
Page 3 of 25
(page number not for citation purposes)
BMC Evolutionary Biology 2005, 5:72
http://www.biomedcentral.com/1471-2148/5/72
(a)
(b)
I
At1g51960
1000
At3g16490
1000
At4g29150
990
a
At5g07240
1000
At5g62070
999
793
2
At4g23060
1
At3g49260
643
b
At3g51380
587
At4g14750
329
At1g01110
1000
At4g00820
1000
c
At4g10640
992
344
At3g49380
At2g43680
II
1000
*
At3g59690
668
At5g03960
946
*
At5g13460
691
*
III
At1g17480
1000
At1g72670
999
At2g26180
984
a
At2g33990
1000
*
At3g15050
587
At3g22190
610
At3g09710
1000
At5g03040
983
b
At3g52290
1000
At2g26410
1
IV
At1g14380
1000
At2g02790
998
1
At1g18840
1000
622
1
At1g74690
1
At1g19870
At5g35670
0.1
1000 nt
(c)
(d)
I
Os01m00895
1000
Os05m00863
990
Os01m05259
1000
Os05m04170
457
Os10m02409
1000
Os03m00584
1000
879
Os03m04199
298
Os04m04664
598
Os08m00125
Os02m01875
181
1000
Os06m02303
II
Os01m06663
Os05m04352
III
1000
Os01m04963
1000
296
Os01m00929
1
478
Os12m04168
a
1000
930
1
Os03m04309
1000
1
Os03m05627
514
Os06m00539
349
Os05m00240
1000
b
Os01m06082
922
Os05m03604
Os05m04307
1
IV
1000
602
1
Os01m05025
1
Os04m05532
Os03m00334
988
1
2
2