-
Notifications
You must be signed in to change notification settings - Fork 4
/
valueIterationAgents.py
125 lines (106 loc) · 4.52 KB
/
valueIterationAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# valueIterationAgents.py
# -----------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import mdp, util
from learningAgents import ValueEstimationAgent
from itertools import izip
import time
class ValueIterationAgent(ValueEstimationAgent):
"""
* Please read learningAgents.py before reading this.*
A ValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs value iteration
for a given number of iterations using the supplied
discount factor.
"""
def __init__(self, mdp, discount = 0.9, iterations = 100):
"""
Your value iteration agent should take an mdp on
construction, run the indicated number of iterations
and then act according to the resulting policy.
Some useful mdp methods you will use:
mdp.getStates()
mdp.getPossibleActions(state)
mdp.getTransitionStatesAndProbs(state, action)
mdp.getReward(state, action, nextState)
mdp.isTerminal(state)
"""
self.mdp = mdp
self.discount = discount
self.iterations = iterations
self.values = util.Counter() # A Counter is a dict with default 0
self.nextValues = util.Counter()
self.policy = dict()
self.argmax = lambda array: max(izip(array, xrange(len(array))))[1]
# Write value iteration code here
# get all possible states
states = self.mdp.getStates()
#run for specified amount of iterations
i = 0
start_time = time.time()
while i < iterations:
#go over all possible states
for s in states:
actions = self.mdp.getPossibleActions(s)
#go over all possible actions
if self.mdp.isTerminal(s):
self.policy[s] = None
else:
q_vals = []
for j,a in enumerate(actions):
#do Bellman backups
q_vals.append(self.getQValue(s, a))
#update state value
self.nextValues[s] = max(q_vals)
#update policy
self.policy[s] = actions[self.argmax(q_vals)]
self.values = self.nextValues.copy()
i += 1
elapsed_time = time.time() - start_time
print ('PLANNING TIME: {}'.format(elapsed_time))
def getValue(self, state):
"""
Return the value of the state (computed in __init__).
"""
return self.values[state]
def computeQValueFromValues(self, state, action):
"""
Compute the Q-value of action in state from the
value function stored in self.values.
"""
q_val = 0
successors = self.mdp.getTransitionStatesAndProbs(state, action)
for succ in successors:
nextState, prob = succ[0], succ[1]
q_val += prob*(self.mdp.getReward(state, action, nextState) + self.discount*self.getValue(nextState))
return q_val
def computeActionFromValues(self, state):
"""
The policy is the best action in the given state
according to the values currently stored in self.values.
You may break ties any way you see fit. Note that if
there are no legal actions, which is the case at the
terminal state, you should return None.
"""
if self.mdp.isTerminal(state):
return None
if state in self.policy.keys():
return self.policy[state]
else: #if correct policy is not yet updated go north
return 'north'
def getPolicy(self, state):
return self.computeActionFromValues(state)
def getAction(self, state):
"Returns the policy at the state (no exploration)."
return self.computeActionFromValues(state)
def getQValue(self, state, action):
return self.computeQValueFromValues(state, action)