forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ReferenceImplementation.qs
104 lines (83 loc) · 3.8 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// We recommend that you try to solve the tasks yourself first,
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.TruthTables {
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Logical;
//////////////////////////////////////////////////////////////////
// Part I. Truth tables as integers
//////////////////////////////////////////////////////////////////
// Task 1. Projective functions (elementary variables)
function ProjectiveTruthTables_Reference () : (TruthTable, TruthTable, TruthTable) {
let x1 = TruthTable(0b10101010, 3);
let x2 = TruthTable(0b11001100, 3);
let x3 = TruthTable(0b11110000, 3);
return (x1, x2, x3);
}
// Task 2. "Exactly 1 bit is true" function
function ExactlyOneBitTrue_Reference () : TruthTable {
let f = TruthTable(0b00010110, 3);
return f;
}
// Task 3. "Exactly 2 bits are true" function
function ExactlyTwoBitsTrue_Reference () : TruthTable {
let f = TruthTable(0b01101000, 3);
return f;
}
// Task 4. Compute AND of two truth tables
function TTAnd_Reference(tt1 : TruthTable, tt2 : TruthTable) : TruthTable {
let (bits1, numVars1) = tt1!;
let (bits2, numVars2) = tt2!;
EqualityFactI(numVars1, numVars2, "Number of variables for both truth tables must match");
return TruthTable(bits1 &&& bits2, numVars1);
}
// Task 5. Compute OR of two truth tables
function TTOr_Reference(tt1 : TruthTable, tt2 : TruthTable) : TruthTable {
let (bits1, numVars1) = tt1!;
let (bits2, numVars2) = tt2!;
EqualityFactI(numVars1, numVars2, "Number of variables for both truth tables must match");
return TruthTable(bits1 ||| bits2, numVars1);
}
// Task 6. Compute XOR of two truth tables
function TTXor_Reference(tt1 : TruthTable, tt2 : TruthTable) : TruthTable {
let (bits1, numVars1) = tt1!;
let (bits2, numVars2) = tt2!;
EqualityFactI(numVars1, numVars2, "Number of variables for both truth tables must match");
return TruthTable(bits1 ^^^ bits2, numVars1);
}
// Task 7. Compute NOT of a truth tables
function TTNot_Reference(tt : TruthTable) : TruthTable {
let (bits, numVars) = tt!;
let mask = (1 <<< (1 <<< numVars)) - 1;
return TruthTable(~~~bits &&& mask, numVars);
}
// Task 8. Build if-then-else truth table
function TTIfThenElse_Reference (ttCond : TruthTable, ttThen: TruthTable, ttElse : TruthTable) : TruthTable {
return TTXor_Reference(TTAnd_Reference(ttCond, ttThen), TTAnd_Reference(TTNot_Reference(ttCond), ttElse));
}
// Task 9. Find all true input assignments in a truth table
function AllMinterms_Reference (tt : TruthTable) : Int[] {
return Mapped(
Fst,
Filtered(
Compose(EqualB(true, _), Snd),
Enumerated(IntAsBoolArray(tt::bits, 2^tt::numVars))
)
);
}
// Task 10. Apply truth table as a quantum operation
operation ApplyXControlledOnFunction_Reference (tt : TruthTable, controls : Qubit[], target : Qubit) : Unit is Adj {
for i in AllMinterms_Reference(tt) {
(ControlledOnInt(i, X))(controls, target);
}
}
}