-
Notifications
You must be signed in to change notification settings - Fork 15
/
p78_support_vector_machine_gamma.py
72 lines (54 loc) · 2.83 KB
/
p78_support_vector_machine_gamma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python
''' support_vector_machine_gamma.py illustrates changing the gamma parameter
for a SVM. This is a cut-off parameters for the Gaussian sphere. A
higher value tightens the decision boundary around the samples
Run the SVM with two values of gamma and plot the decision regions
Created on Jun 23, 2016
from Python Machine Learning by Sebastian Raschka under the following license
The MIT License (MIT)
Copyright (c) 2015, 2016 SEBASTIAN RASCHKA (mail@sebastianraschka.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
@author: richard lyman
'''
import numpy as np
import ocr_utils
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
y_train, X_train, y_test, X_test, labels = ocr_utils.load_E13B(chars_to_train = (48,49,50) , columns=(9,17), test_size=0.3, nChars=300, random_state=0)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
svm.fit(X_train_std, y_train)
ocr_utils.plot_decision_regions(X=X_combined_std,
y=y_combined,
classifier=svm,
labels = labels,
test_idx=range(len(X_test_std),len(X_combined_std)),
title='SVM with gamma 0.2')
svm = SVC(kernel='rbf', random_state=0, gamma=100.0, C=1.0)
svm.fit(X_train_std, y_train)
ocr_utils.plot_decision_regions(X=X_combined_std,
y=y_combined,
classifier=svm,
labels = labels,
test_idx=range(len(X_test_std),len(X_combined_std)),
title='SVM with gamma 100')
print ('\n########################### No Errors ####################################')