|
91 | 91 | title='k-means cluster E13B sum of columns')
|
92 | 92 |
|
93 | 93 | from sklearn.cluster import KMeans
|
94 |
| -km = KMeans(n_clusters=3,init='random',n_init=10,max_iter=300,tol=1e-04,random_state=0) |
| 94 | +km = KMeans(n_clusters=3,init='random',n_init=10,max_iter=300,tol=1e-04,random_state=0,n_jobs=-1) |
95 | 95 | y_km = km.fit_predict(X)
|
96 | 96 |
|
97 | 97 | legend=[]
|
|
111 | 111 | axis_labels = ['column {} sum'.format(columnsXY[i]) for i in range(len(columnsXY))],
|
112 | 112 | title='column sums k means centroids')
|
113 | 113 |
|
114 |
| -km = KMeans(n_clusters=3,n_init=10,max_iter=300,tol=1e-04,random_state=0) |
| 114 | +km = KMeans(n_clusters=3,n_init=10,max_iter=300,tol=1e-04,random_state=0,n_jobs=-1) |
115 | 115 | y_km = km.fit_predict(X)
|
116 | 116 |
|
117 | 117 | legend=[]
|
|
163 | 163 |
|
164 | 164 | distortions=[]
|
165 | 165 | for i in range(1,30):
|
166 |
| - km = KMeans(n_clusters=i,n_init=10,max_iter=300,tol=1e-04,random_state=0) |
| 166 | + km = KMeans(n_clusters=i,n_init=10,max_iter=300,tol=1e-04,random_state=0,n_jobs=-1) |
167 | 167 | y_km = km.fit_predict(X_image)
|
168 | 168 | distortions.append(km.inertia_)
|
169 | 169 |
|
|
175 | 175 | ocr_utils.show_figures(plt, title)
|
176 | 176 |
|
177 | 177 |
|
178 |
| -km = KMeans(n_clusters=8,n_init=10,max_iter=300,tol=1e-04,random_state=0) |
| 178 | +km = KMeans(n_clusters=8,n_init=10,max_iter=300,tol=1e-04,random_state=0,n_jobs=-1) |
179 | 179 | y_km = km.fit_predict(X_image)
|
180 | 180 |
|
181 | 181 | nClusters = km.cluster_centers_.shape[0]
|
|
0 commit comments