forked from rushter/MLAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgaussian_mixture.py
169 lines (141 loc) · 6.54 KB
/
gaussian_mixture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import random
import numpy as np
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
from mla.base import BaseEstimator
from mla.kmeans import KMeans
class GaussianMixture(BaseEstimator):
"""Gaussian Mixture Model: clusters with Gaussian prior.
Finds clusters by repeatedly performing Expectation–Maximization (EM) algorithm
on the dataset. GMM assumes the datasets is distributed in multivariate Gaussian,
and tries to find the underlying structure of the Gaussian, i.e. mean and covariance.
E-step computes the "responsibility" of the data to each cluster, given the mean
and covariance; M-step computes the mean, covariance and weights (prior of each
cluster), given the responsibilities. It iterates until the total likelihood
changes less than the tolerance.
Parameters
----------
K : int
The number of clusters into which the dataset is partitioned.
max_iters: int
The maximum iterations of assigning points to the perform EM.
Short-circuited by the assignments converging on their own.
init: str, default 'random'
The name of the method used to initialize the first clustering.
'random' - Randomly select values from the dataset as the K centroids.
'kmeans' - Initialize the centroids, covariances, weights with KMeams's clusters.
tolerance: float, default 1e-3
The tolerance of difference of the two latest likelihood for convergence.
"""
y_required = False
def __init__(self, K=4, init='random', max_iters=500, tolerance=1e-3):
self.K = K
self.max_iters = max_iters
self.init = init
self.assignments = None
self.likelihood = []
self.tolerance = tolerance
def fit(self, X, y=None):
'''Perform Expectation–Maximization (EM) until converged.'''
self._setup_input(X, y)
self._initialize()
for _ in range(self.max_iters):
self._E_step()
self._M_step()
if self._is_converged():
break
def _initialize(self):
"""Set the initial weights, means and covs (with full covariance matrix).
weights: the prior of the clusters (what percentage of data does a cluster have)
means: the mean points of the clusters
covs: the covariance matrix of the clusters
"""
self.weights = np.ones(self.K)
if self.init == 'random':
self.means = [self.X[x] for x in random.sample(range(self.n_samples), self.K)]
self.covs = [np.cov(self.X.T) for _ in range(K)]
elif self.init == 'kmeans':
kmeans = KMeans(K=self.K, max_iters=self.max_iters // 3, init='++')
kmeans.fit(self.X)
self.assignments = kmeans.predict()
self.means = kmeans.centroids
self.covs = []
for i in np.unique(self.assignments):
self.weights[int(i)] = (self.assignments == i).sum()
self.covs.append(np.cov(self.X[self.assignments == i].T))
else:
raise ValueError('Unknown type of init parameter')
self.weights /= self.weights.sum()
def _E_step(self):
'''Expectation(E-step) for Gaussian Mixture.'''
likelihoods = self._get_likelihood(self.X)
self.likelihood.append(likelihoods.sum())
weighted_likelihoods = self._get_weighted_likelihood(likelihoods)
self.assignments = weighted_likelihoods.argmax(axis=1)
weighted_likelihoods /= weighted_likelihoods.sum(axis=1)[:, np.newaxis]
self.responsibilities = weighted_likelihoods
def _M_step(self):
'''Maximization (M-step) for Gaussian Mixture.'''
weights = self.responsibilities.sum(axis=0)
for assignment in range(self.K):
resp = self.responsibilities[:, assignment][:, np.newaxis]
self.means[assignment] = (resp * self.X).sum(axis=0) / resp.sum()
self.covs[assignment] = (self.X - self.means[assignment]).T.dot(
(self.X - self.means[assignment]) * resp) / weights[assignment]
self.weights = weights / weights.sum()
def _is_converged(self):
"""Check if the difference of the latest two likelihood is less than the tolerance."""
if (len(self.likelihood) > 1) and (self.likelihood[-1] - self.likelihood[-2] <= self.tolerance):
return True
return False
def _predict(self, X):
'''Get the assignments for X with GMM clusters.'''
if not X.shape:
return self.assignments
likelihoods = self._get_likelihood(X)
weighted_likelihoods = self._get_weighted_likelihood(likelihoods)
assignments = weighted_likelihoods.argmax(axis=1)
return assignments
def _get_likelihood(self, data):
n_data = data.shape[0]
likelihoods = np.zeros([n_data, self.K])
for c in range(self.K):
likelihoods[:, c] = multivariate_normal.pdf(data, self.means[c], self.covs[c])
return likelihoods
def _get_weighted_likelihood(self, likelihood):
return self.weights * likelihood
def plot(self, data=None, ax=None, holdon=False):
'''Plot contour for 2D data.'''
if not (len(self.X.shape) == 2 and self.X.shape[1] == 2):
raise AttributeError("Only support for visualizing 2D data.")
if ax is None:
_, ax = plt.subplots()
if data is None:
data = self.X
assignments = self.assignments
else:
assignments = self.predict(data)
COLOR = 'bgrcmyk'
cmap = lambda assignment: COLOR[int(assignment) % len(COLOR)]
# generate grid
delta = .025
margin = .2
xmax, ymax = self.X.max(axis=0) + margin
xmin, ymin = self.X.min(axis=0) - margin
axis_X, axis_Y = np.meshgrid(np.arange(xmin, xmax, delta),
np.arange(ymin, ymax, delta))
def grid_gaussian_pdf(mean, cov):
grid_array = np.array(list(zip(axis_X.flatten(), axis_Y.flatten())))
return multivariate_normal.pdf(grid_array, mean, cov).reshape(axis_X.shape)
# plot scatters
if assignments is None:
c = None
else:
c = [cmap(assignment) for assignment in assignments]
ax.scatter(data[:, 0], data[:, 1], c=c)
# plot contours
for assignment in range(self.K):
ax.contour(axis_X, axis_Y, grid_gaussian_pdf(self.means[assignment], self.covs[assignment]),
colors=cmap(assignment))
if not holdon:
plt.show()