forked from cemoody/wizlang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathveclib.py
291 lines (268 loc) · 8.83 KB
/
veclib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from difflib import get_close_matches
import pandas as pd
import numpy as np
import os.path
import string
import difflib
import unicodedata
import numexpr as ne
import time
from sets import Set
from utils import *
""" A library to lookup word vectors, reduce the vector list to a subset and
calculate the nearest word given a vector"""
trained = "/u/cmoody3/data2/ids/trained"
fnw = '%s/vectors.bin.008.words' % trained
fnv = '%s/vectors.bin.008.num' % trained
fnc = 'data/movies_canonical'
def distance(v1, v2, axis=None):
if type(v1) is str:
v1 = lookup_vector(v1)
if type(v2) is str:
v2 = lookup_vector(v2)
if len(v1.shape[0]) > 1:
axis = 1
i = (v1.astype(np.float64) - v2.astype(np.float64))**2.0
d = np.sqrt(np.sum(i, axis=axis, dtype=np.float128))
return d
def reshape(v1):
if len(v1.shape) == 1:
shape = [1, v1.shape[0]]
v1 = np.reshape(v1, shape)
return v1
def mag(x):
return np.sqrt(np.sum(x**2.0, axis=1))
mag2 = lambda x: np.sqrt(np.sum(x**2.0, axis=1))
mag1 = lambda x: np.sqrt(np.sum(x**2.0, axis=0))
def similarity(svec, total):
smv = np.reshape(total, (1, total.shape[0]))
top = svec * smv
denom = mag2(svec) * mag1(total)
denom = np.reshape(denom, (denom.shape[0], 1))
sim = np.sum(top / denom, axis=1)
return sim
def normalize(avl):
vnorm = ne.evaluate('sum(avl**2.0, axis=1)')
vnorm.shape = [vnorm.shape[0], 1]
avl = ne.evaluate('avl / sqrt(vnorm)')
return avl
@timer
def split(operation, data, i=300):
a, b = 0, 0
chunk = data.shape[0] / i
for j in range(i):
b += chunk
data[a:b] = operation(data[a:b])
a = b
return data
def chunks(l, n):
for i in xrange(0, len(l), n):
yield l[i:i+n]
def in_between(vectora, vectorb, vector_lib, index2word, n=10):
#Measure rough dispersion in each dimension
dispersion = np.abs(vectorb - vectora)
vectora = np.reshape(vectora, (1, vectora.shape[0]))
vectorb = np.reshape(vectorb, (1, vectorb.shape[0]))
dist = np.minimum(np.abs(vector_lib - vectora),
np.abs(vector_lib - vectorb))
idx = np.argsort(dist)
words = [index2word[idx[i]] for i in range(n)]
return dist / dispersion
def build_n2(words, avl, aw2i):
nargs = len(words)
N2 = np.zeros((nargs, nargs))
vectors = {word:avl[aw2i[word]] for word in words}
for i, worda in enumerate(words):
vectora = vectors[worda]
for j, wordb in enumerate(words):
if j == i: continue
vectorb = vectors[wordb]
dist = (vectora * vectorb).sum(dtype=np.float128)
N2[i, j] = dist
print worda, wordb, dist
N1 = np.sum(N2, axis=0)
return N2, N1, vectors
def common_words(words, vectors, avl, aw2i, ai2w, N2, N1,
blacklist=None, n=50):
f = words[np.argmin(N1)]
total = [v for w, v in vectors.iteritems() if not w==f]
total = np.sum(total, axis=0)
total /= np.sum(np.sqrt(total**2.0))
wordsa, vectorsa, sima = nearest_word(total, avl, ai2w, n=n)
wordsb, vectorsb, simb = nearest_word(vectors[f], avl, ai2w, n=n)
wordsa = [w for w, s in zip(wordsa, sima) if s < 0.75]
wordsb = [w for w, s in zip(wordsb, simb) if s < 0.75]
if blacklist:
wordsa = [w for w in wordsa if w not in blacklist]
wordsb = [w for w in wordsb if w not in blacklist]
inner = [w for w in wordsa if w in wordsb]
left = [w for w in wordsa if w not in wordsb]
right = [w for w in wordsb if w not in wordsa]
return inner, left, right
def max_similarity(words, checkwords, avl, aw2i):
"""
For every word, calculate the most similar word
in checkwords. Keep that similarity measure.
"""
resp = []
for word in words:
sim = -1e99
if type(word) is str:
word = avl[aw2i[word]]
for check in checkwords:
if type(check) is str:
check = avl[aw2i[check]]
sim = max(np.sum(word * check), sim)
resp.append(sim)
return resp
@timer
def nearest_word(vector, vector_lib, index2word, n=5, skip=0,
chunk_size=100000, use_ne=False, use_shortdot=False,
use_annoy=True, thresh=0.0):
words = []
if use_annoy:
vector = list(vector)
idx = vector_lib.get_nns_by_vector(vector, n)
words = [index2word[i] for i in idx[:n]]
vectors = [vector_lib.get_item_vector(i) for i in idx]
sim = [np.dot(v, vector) for v in vectors]
elif use_ne:
d = ne.evaluate('sum(vector_lib * vector, axis=1)')
idx = np.argsort(d)[::-1]
words = [index2word[i] for i in idx[:n]]
sim = [d[i] for i in idx[:n]]
vectors = [vector_lib[i] for i in idx[:n] ]
elif use_shortdot:
import shortdot
d = np.zeros(vector_lib.shape[0], dtype='f4')
shortdot.shortdot(vector_lib, vector, d, 100, thresh)
idx = np.argsort(d)[::-1]
words = [index2word[i] for i in idx[:n]]
sim = [d[i] for i in idx[:n]]
vectors = [vector_lib[i] for i in idx[:n] ]
else:
sims = []
offset = 0
for vl in chunks(vector_lib, chunk_size):
d = similarity(vl, vector)
da = np.argsort(d)[::-1]
for idx in da[:n]:
words.append(index2word[idx + offset])
sims.append(d[idx])
offset += chunk_size
idx = np.argsort(sims)[::-1]
words = [words[i] for i in idx[:n]]
sim = [d[i] for i in idx[:n]]
vectors = [vector_lib[i] for i in idx[:n] ]
return words, vectors, sim
@timer
def subsample(avl, w2i, i2w, whitelist, n):
subw2i = {}
subi2w = {}
count = 0
for i in range(len(avl)):
word = i2w[i]
if count < n or '_' in word or word in whitelist:
subi2w[i] = word
subw2i[word] = count
count +=1
indices = subi2w.keys()
subavl = avl[indices]
return subavl, subw2i, subi2w
@timer
def lookup_vector(word, vector_lib, w2i, fuzzy=True):
keys = w2i.keys()
if word not in keys:
key, = get_close_matches(word, keys, 1)
else:
key = word
print 'Lookup: %s -> %s' % (word, key)
return vector_lib[w2i[key]]
@timer
def get_canon_rep(fn):
c2f, f2c = {}, {}
with open(fn) as fh:
for line in fh.readlines():
line = line.strip()
line = line.replace(' ', ' ')
f, c = line.rsplit(',', 1)
f, c = f.strip(), c.strip()
c2f[c] = f
f2c[f] = c
return c2f, f2c
def canonize(phrase, c2f, match=True, n=1):
phrase = phrase.replace('\n','').replace('\t','').replace('\r','')
phrase = phrase.strip()
phrase = phrase.replace(' ', '_')
phrase = phrase.strip().lower()
keys = Set(c2f.keys())
for i in range(5):
phrase = phrase.replace(' ', ' ')
if phrase in keys: return phrase
phrase = phrase.replace('-', '_')
for p in string.punctuation:
phrase = phrase.replace(p, '')
if phrase in keys: return phrase
phrase = phrase.replace(' ', '_')
if phrase in keys: return phrase
if not match:
return phrase
phrases = difflib.get_close_matches(phrase, sub, n)
phrases = [unicodedata.normalize('NFKD', unicode(phrase)).encode('ascii','ignore') for phrase in phrases]
return phrases[0]
@timer
def reduce_vectorlib(vector_lib, word2index, canon):
indices = []
w2i, i2w = {}, {}
outindex = 0
words = Set(word2index.keys())
common = Set(canon).intersection(words)
for name in common:
index = word2index[name]
indices.append(index)
w2i[name] = outindex
i2w[outindex] = name
outindex += 1
indices = np.array(indices)
rvl = vector_lib[indices]
return rvl, w2i, i2w
@timer
def get_names(fn=fnc):
names = [x.replace('\n', '').strip() for x in fh.readlines()]
text = ''.join(names)
text = text.replace('\n', '')
return text
@timer
def get_words(fn=fnw, subsample=None):
words = open(fn).readlines()
word2index = {}
index2word = {}
for v, k in enumerate(words):
k = k.strip().replace('\n', '')
if subsample:
if v > subsample - 1:
break
index2word[v] = k
word2index[k] = v
k = canonize(k, {}, match=False)
word2index[k] = v
return word2index, index2word
@timer
def get_english(fn):
words = []
with open(fn) as fh:
for line in fh.readlines():
words.append(line.strip())
return words
@timer
def get_vector_lib(fn=fnv):
fnvn = fn.replace('.npy', '')
if not os.path.exists(fn) and os.path.exists(fnvn):
data = pd.read_csv(fn, sep=' ',
dtype='f4', na_filter=False)
data = np.array(data, dtype=np.float32)
np.save(fn, data)
return data
else:
vectors = np.load(fn)
return vectors